Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
N Engl J Med ; 384(13): 1240-1247, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33789012

RESUMEN

During the 2018-2020 Ebola virus disease (EVD) outbreak in North Kivu province in the Democratic Republic of Congo, EVD was diagnosed in a patient who had received the recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) (Merck). His treatment included an Ebola virus (EBOV)-specific monoclonal antibody (mAb114), and he recovered within 14 days. However, 6 months later, he presented again with severe EVD-like illness and EBOV viremia, and he died. We initiated epidemiologic and genomic investigations that showed that the patient had had a relapse of acute EVD that led to a transmission chain resulting in 91 cases across six health zones over 4 months. (Funded by the Bill and Melinda Gates Foundation and others.).


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/transmisión , Adulto , Teorema de Bayes , República Democrática del Congo/epidemiología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/aislamiento & purificación , Resultado Fatal , Genoma Viral , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/terapia , Humanos , Masculino , Mutación , Filogenia , ARN Viral/sangre , Recurrencia
2.
Lancet Infect Dis ; 19(6): 648-657, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000464

RESUMEN

BACKGROUND: The real-time generation of information about pathogen genomes has become a vital goal for transmission analysis and characterisation in rapid outbreak responses. In response to the recently established genomic capacity in the Democratic Republic of the Congo, we explored the real-time generation of genomic information at the start of the 2018 Ebola virus disease (EVD) outbreak in North Kivu Province. METHODS: We used targeted-enrichment sequencing to produce two coding-complete Ebola virus genomes 5 days after declaration of the EVD outbreak in North Kivu. Subsequent sequencing efforts yielded an additional 46 genomes. Genomic information was used to assess early transmission, medical countermeasures, and evolution of Ebola virus. FINDINGS: The genomic information demonstrated that the EVD outbreak in the North Kivu and Ituri Provinces was distinct from the 2018 EVD outbreak in Équateur Province of the Democratic Republic of the Congo. Primer and probe mismatches to Ebola virus were identified in silico for all deployed diagnostic PCR assays, with the exception of the Cepheid GeneXpert GP assay. INTERPRETATION: The first two coding-complete genomes provided actionable information in real-time for the deployment of the rVSVΔG-ZEBOV-GP Ebola virus envelope glycoprotein vaccine, available therapeutics, and sequence-based diagnostic assays. Based on the mutations identified in the Ebola virus surface glycoprotein (GP12) observed in all 48 genomes, deployed monoclonal antibody therapeutics (mAb114 and ZMapp) should be efficacious against the circulating Ebola virus variant. Rapid Ebola virus genomic characterisation should be included in routine EVD outbreak response procedures to ascertain efficacy of medical countermeasures. FUNDING: Defense Biological Product Assurance Office.


Asunto(s)
Anticuerpos Monoclonales/genética , Antivirales/uso terapéutico , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/genética , Genómica , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Humanos , Contramedidas Médicas , Estudios Retrospectivos
5.
PLoS One ; 8(1): e53198, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326398

RESUMEN

INTRODUCTION: Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. MATERIALS AND METHODS: An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. RESULTS: 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. CONCLUSION: The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate financing for malaria control.


Asunto(s)
Mapeo Geográfico , Financiación de la Atención de la Salud , Malaria/economía , Malaria/prevención & control , África/epidemiología , Humanos , Malaria/epidemiología , Programas Nacionales de Salud
6.
Malar J ; 11: 236, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22823945

RESUMEN

BACKGROUND: To control malaria, the Rwandan government and its partners distributed insecticide-treated nets (ITN) and made artemisinin-based combination therapy (ACT) widely available from 2005 onwards. The impact of these interventions on malaria cases, admissions and deaths was assessed using data from district hospitals and household surveys. METHODS: District records of ITN and ACT distribution were reviewed. Malaria and non-malaria indictors in 30 district hospitals were ascertained from surveillance records. Trends in cases, admissions and deaths for 2000 to 2010 were assessed by segmented log-linear regression, adjusting the effect size for time trends during the pre-intervention period, 2000-2005. Changes were estimated by comparing trends in post-intervention (2006-2010) with that of pre-intervention (2000-2005) period. All-cause deaths in children under-five in household surveys of 2005 and 2010 were also reviewed to corroborate with the trends of deaths observed in hospitals. RESULTS: The proportion of the population potentially protected by ITN increased from nearly zero in 2005 to 38% in 2006, and 76% in 2010; no major health facility stock-outs of ACT were recorded following their introduction in 2006. In district hospitals, after falling during 2006-2008, confirmed malaria cases increased in 2009 coinciding with decreased potential ITN coverage and declined again in 2010 following an ITN distribution campaign. For all age groups, from the pre-intervention period, microscopically confirmed cases declined by 72%, (95% Confidence Interval [CI], 12-91%) in 2010, slide positivity rate declined 58%, (CI, 47%-68%), malaria inpatient cases declined 76% (CI, 49%-88%); and malaria deaths declined 47% (CI, 47%-81%). In children below five years of age, malaria inpatients decreased 82% (CI, 61%-92%) and malaria hospital deaths decreased 77% (CI, 40%-91%). Concurrently, outpatient cases, admissions and deaths due to non-malaria diseases in all age groups either increased or remained unchanged. Rainfall and temperature remained favourable for malaria transmission. The annual all-cause mortality in children under-five in household surveys declined from 152 per 1,000 live births during 2001-2005, to 76 per 1,000 live births in 2006-2010 (55% decline). The five-year cumulative number of all-cause deaths in hospital declined 28% (8,051 to 5,801) during the same period. CONCLUSIONS: A greater than 50% decline in confirmed malaria cases, admissions and deaths at district hospitals in Rwanda since 2005 followed a marked increase in ITN coverage and use of ACT. The decline occurred among both children under-five and in those five years and above, while hospital utilization increased and suitable conditions for malaria transmission persisted. Declines in malaria indicators in children under 5 years were more striking than in the older age groups. The resurgence in cases associated with decreased ITN coverage in 2009 highlights the need for sustained high levels of anti-malarial interventions in Rwanda and other malaria endemic countries.


Asunto(s)
Antimaláricos/administración & dosificación , Hospitalización/tendencias , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/epidemiología , Malaria/mortalidad , Control de Mosquitos/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Malaria/tratamiento farmacológico , Malaria/prevención & control , Masculino , Persona de Mediana Edad , Prevalencia , Rwanda/epidemiología , Análisis de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...