Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(82): 12346-12349, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37767913

RESUMEN

Enhancing the reversible Li growth efficiency in "Li-free" solid-state batteries is key for the deployment of this technology. Here, we demonstrate a nanoscale material design path that enables the reversible cycling of a lithium-free solid-state battery, using Li7La3Zr2O12 (LLZO) electrolyte. By means of nanometric Ag-Cu bilayers, directly sputtered onto the LLZO, we can effectively control Li deposition. The robust thin film bilayer, which is compatible with LLZO, enables stable cycling, accommodating the volume changes without the need for extra external pressure.

2.
J Phys Condens Matter ; 34(46)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36108621

RESUMEN

We systematically analyze the influence of 5 nm thick metal interlayers inserted at the interface of several sets of different metal-dielectric systems to determine the parameters that most influence interface transport. Our results show that despite the similar Debye temperatures of Al2O3and AlN substrates, the thermal boundary conductance measured for the Au/Al2O3system with Ni and Cr interlayers is ∼2× and >3× higher than the corresponding Au/AlN system, respectively. We also show that for crystalline SiO2(quartz) and Al2O3substrates having highly dissimilar Debye temperature, the measured thermal boundary conductance between Al/Al2O3and Al/SiO2are similar in the presence of Ni and Cr interlayers. We suggest that comparing the maximum phonon frequency of the acoustic branches is a better parameter than the Debye temperature to predict the change in the thermal boundary conductance. We show that the electron-phonon coupling of the metallic interlayers also alters the heat transport pathways in a metal-dielectric system in a nontrivial way. Typically, interlayers with large electron-phonon coupling strength can increase the thermal boundary conductance by dragging electrons and phonons into equilibrium quickly. However, our results show that a Ta interlayer, having a high electron-phonon coupling, shows a low thermal boundary conductance due to the poor phonon frequency overlap with the top Al layer. Our experimental work can be interpreted in the context of diffuse mismatch theory and can guide the selection of materials for thermal interface engineering.

3.
Phys Rev Lett ; 127(14): 147201, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652169

RESUMEN

We demonstrate a nanoscale materials design path that allows us to bypass universality in thin ferromagnetic films and enables us to tune the critical exponents of ferromagnetic phase transitions in a very wide parameter range, while at the same time preserving scaling in an extended phase space near the Curie temperature. Our detailed magnetometry results reveal that single crystal CoRu alloy films, in which the predefined depth dependent exchange coupling strength follows a V-shaped profile, exhibit critical scaling behavior over many orders of magnitude. Their critical exponents, however, can be designed and controlled by modifying their specific nanoscale structures, thus demonstrating full tunability of critical behavior. The reason for this tunability and the disappearance of universality is shown to be the competing relevance of collective versus interface propagating progression of ferromagnetic phase transitions, whose balance we find to be dependent on the specifics of the underlying exchange coupling strength profile.

4.
Materials (Basel) ; 11(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415524

RESUMEN

Abstract: Ferromagnetic alloy materials with designed composition depth profiles provide an efficient route for the control of magnetism at the nanometer length scale. In this regard, cobalt-chromium and cobalt-ruthenium alloys constitute powerful model systems. They exhibit easy-to-tune magnetic properties such as saturation magnetization MS and Curie temperature TC while preserving their crystalline structure over a wide composition range. In order to demonstrate this materials design potential, we have grown a series of graded Co1-xCrx and Co1-wRuw (1010) epitaxial thin films, with x and w following predefined concentration profiles. Structural analysis measurements verify the epitaxial nature and crystallographic quality of our entire sample sets, which were designed to exhibit in-plane c-axis orientation and thus a magnetic in-plane easy axis to achieve suppression of magnetostatic domain generation. Temperature and field-dependent magnetic depth profiles have been measured by means of polarized neutron reflectometry. In both investigated structures, TC and MS are found to vary as a function of depth in accordance with the predefined compositional depth profiles. Our Co1-wRuw sample structures, which exhibit very steep material gradients, allow us to determine the localization limit for compositionally graded materials, which we find to be of the order of 1 nm. The Co1-xCrx systems show the expected U-shaped TC and MS depth profiles, for which these specific samples were designed. The corresponding temperature dependent magnetization profile is then utilized to control the coupling along the film depth, which even allows for a sharp onset of decoupling of top and bottom sample parts at elevated temperatures.

5.
Small ; 11(47): 6295-301, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26505882

RESUMEN

Graphene has been predicted to develop a magnetic moment by proximity effect when placed on a ferromagnetic film, a promise that could open exciting possibilities in the fields of spintronics and magnetic data recording. In this work, the interplay between the magnetoresistance of graphene and the magnetization of an underlying ferromagnetic insulating film is studied in detail. A clear correlation between both magnitudes is observed but through a careful modeling of the magnetization and the weak localization measurements, that such correspondence can be explained by the effects of the magnetic stray fields arising from the ferromagnetic insulator is found. The results emphasize the complexity arising at the interface between magnetic and 2D materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...