Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352448

RESUMEN

Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish-kills. Their polyketide polyether toxins, the prymnesins, are amongst the largest nonpolymeric compounds in nature, alongside structurally-related health-impacting "red-tide" polyether toxins whose biosynthetic origins have been an enigma for over 40 years. Here we report the 'PKZILLAs', massive P. parvum polyketide synthase (PKS) genes, whose existence and challenging genomic structure evaded prior detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 MDa with 140 and 99 enzyme domains, exceeding the largest known protein titin and all other known PKS systems. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. This discovery establishes a model system for microalgal polyether biosynthesis and expands expectations of genetic and enzymatic size limits in biology.

2.
Curr Biol ; 33(11): 2246-2259.e8, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37224809

RESUMEN

Harmful algal blooms of the toxic haptophyte Prymnesium parvum are a recurrent problem in many inland and estuarine waters around the world. Strains of P. parvum vary in the toxins they produce and in other physiological traits associated with harmful algal blooms, but the genetic basis for this variation is unknown. To investigate genome diversity in this morphospecies, we generated genome assemblies for 15 phylogenetically and geographically diverse strains of P. parvum, including Hi-C guided, near-chromosome-level assemblies for two strains. Comparative analysis revealed considerable DNA content variation between strains, ranging from 115 to 845 Mbp. Strains included haploids, diploids, and polyploids, but not all differences in DNA content were due to variation in genome copy number. Haploid genome size between strains of different chemotypes differed by as much as 243 Mbp. Syntenic and phylogenetic analyses indicate that UTEX 2797, a common laboratory strain from Texas, is a hybrid that retains two phylogenetically distinct haplotypes. Investigation of gene families variably present across the strains identified several functional categories associated with metabolic and genome size variation in P. parvum, including genes for the biosynthesis of toxic metabolites and proliferation of transposable elements. Together, our results indicate that P. parvum comprises multiple cryptic species. These genomes provide a robust phylogenetic and genomic framework for investigations into the eco-physiological consequences of the intra- and inter-specific genetic variation present in P. parvum and demonstrate the need for similar resources for other harmful algal-bloom-forming morphospecies.


Asunto(s)
Haptophyta , Toxinas Biológicas , Floraciones de Algas Nocivas/fisiología , Filogenia , Haptophyta/genética , ADN/genética
3.
BMC Bioinformatics ; 24(1): 133, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016291

RESUMEN

BACKGROUND: RNA-seq followed by de novo transcriptome assembly has been a transformative technique in biological research of non-model organisms, but the computational processing of RNA-seq data entails many different software tools. The complexity of these de novo transcriptomics workflows therefore presents a major barrier for researchers to adopt best-practice methods and up-to-date versions of software. RESULTS: Here we present a streamlined and universal de novo transcriptome assembly and annotation pipeline, transXpress, implemented in Snakemake. transXpress supports two popular assembly programs, Trinity and rnaSPAdes, and allows parallel execution on heterogeneous cluster computing hardware. CONCLUSIONS: transXpress simplifies the use of best-practice methods and up-to-date software for de novo transcriptome assembly, and produces standardized output files that can be mined using SequenceServer to facilitate rapid discovery of new genes and proteins in non-model organisms.


Asunto(s)
Programas Informáticos , Transcriptoma , Análisis de Secuencia de ARN/métodos , RNA-Seq , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular
5.
J Am Chem Soc ; 144(21): 9372-9379, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583956

RESUMEN

Harmful cyanobacterial blooms (cyanoHABs) cause recurrent toxic events in global watersheds. Although public health agencies monitor the causal toxins of most cyanoHABs and scientists in the field continue developing precise detection and prediction tools, the potent anticholinesterase neurotoxin, guanitoxin, is not presently environmentally monitored. This is largely due to its incompatibility with widely employed analytical methods and instability in the environment, despite guanitoxin being among the most lethal cyanotoxins. Here, we describe the guanitoxin biosynthesis gene cluster and its rigorously characterized nine-step metabolic pathway from l-arginine in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. Through environmental sequencing data sets, guanitoxin (gnt) biosynthetic genes are repeatedly detected and expressed in municipal freshwater bodies that have undergone past toxic events. Knowledge of the genetic basis of guanitoxin biosynthesis now allows for environmental, biosynthetic gene monitoring to establish the global scope of this neurotoxic organophosphate.


Asunto(s)
Cianobacterias , Cianobacterias/genética , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Monitoreo del Ambiente , Agua Dulce , Familia de Multigenes
6.
J Am Chem Soc ; 144(17): 7686-7692, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438481

RESUMEN

Moroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree Dendrocnide moroides. Moroidin and its analog celogentin C, derived from Celosia argentea, are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development. Here, we present biosynthesis as an alternative route to moroidin-type bicyclic peptides and report that they are ribosomally synthesized and posttranslationally modified peptides (RiPPs) derived from BURP-domain peptide cyclases in plants. By mining 793 plant transcriptomes for moroidin core peptide motifs within BURP-domain precursor peptides, we identified a moroidin cyclase in Japanese kerria, which catalyzes the installation of the tryptophan-indole-centered macrocyclic bonds of the moroidin bicyclic motif in the presence of cupric ions. Based on the kerria moroidin cyclase, we demonstrate the feasibility of producing diverse moroidins including celogentin C in transgenic tobacco plants and report specific cytotoxicity of celogentin C against a lung adenocarcinoma cancer cell line. Our study sets the stage for future biosynthetic development of moroidin-based therapeutics and highlights that mining plant transcriptomes can reveal bioactive cyclic peptides and their underlying cyclases from new source plants.


Asunto(s)
Péptidos Cíclicos , Triptófano , Australia , Péptidos/metabolismo , Péptidos/farmacología , Péptidos Cíclicos/química , Plantas , Procesamiento Proteico-Postraduccional , Triptófano/metabolismo
7.
Curr Opin Chem Biol ; 59: 119-129, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32731193

RESUMEN

Throughout history, humans have encountered natural toxic chemicals from the ocean environment, often through contaminated seafood. Although marine toxins can be harmful to human health and devastate local environments when they are produced during algal bloom events, they are also important biochemical research reagents and drug leads in medicine. In spite of their long history, the biosynthetic origin of many well-known marine toxins has remained elusive. New biosynthetic insights have shed light on the chemical transformations that create the complex structures of several iconic oceanic toxins. To that end, this review highlights advances made in the biosynthetic understanding of five important environmental toxins of marine origin: domoic acid, kainic acid, saxitoxin, tetrodotoxin, and polyether polyketides such as brevetoxin.


Asunto(s)
Vías Biosintéticas , Toxinas Marinas/metabolismo , Animales , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Ácido Kaínico/análogos & derivados , Ácido Kaínico/química , Ácido Kaínico/metabolismo , Toxinas Marinas/química , Saxitoxina/química , Saxitoxina/metabolismo , Tetrodotoxina/química , Tetrodotoxina/metabolismo
8.
Sci Rep ; 10(1): 10443, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591605

RESUMEN

Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Laboratory culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthetic pathways of the luciferins. Other groups, including terrestrial fireflies, do synthesize their own luciferin, but culturing them is difficult and the biosynthetic pathway for firefly luciferin remains unclear. An additional independent origin of endogenous bioluminescence is found within ostracods from the family Cypridinidae, which use their luminescence for defense and, in Caribbean species, for courtship displays. Here, we report the first complete life cycle of a luminous ostracod (Vargula tsujii Kornicker & Baker, 1977, the California Sea Firefly) in the laboratory. We also describe the late-stage embryogenesis of Vargula tsujii and discuss the size classes of instar development. We find embryogenesis in V. tsujii ranges from 25-38 days, and this species appears to have five instar stages, consistent with ontogeny in other cypridinid lineages. We estimate a complete life cycle at 3-4 months. We also present the first complete mitochondrial genome for Vargula tsujii. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system.


Asunto(s)
Evolución Biológica , Crustáceos/metabolismo , Luminiscencia , Animales , Acuicultura/métodos , Organismos Acuáticos/metabolismo , California , Crustáceos/embriología , Crustáceos/genética , Crustáceos/crecimiento & desarrollo , Femenino , Genética de Población , Genoma/genética , Genoma Mitocondrial/genética , Estadios del Ciclo de Vida , Masculino , Mitocondrias/genética , Secuenciación Completa del Genoma
9.
Nat Plants ; 5(8): 867-878, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332312

RESUMEN

Kava (Piper methysticum) is an ethnomedicinal shrub native to the Polynesian islands with well-established anxiolytic and analgesic properties. Its main psychoactive principles, kavalactones, form a unique class of polyketides that interact with the human central nervous system through mechanisms distinct from those of conventional psychiatric drugs. However, an unknown biosynthetic machinery and difficulty in chemical synthesis hinder the therapeutic use of kavalactones. In addition, kava also produces flavokavains, which are chalconoids with anticancer properties structurally related to kavalactones. Here, we report de novo elucidation of the key enzymes of the kavalactone and flavokavain biosynthetic network. We present the structural basis for the evolutionary development of a pair of paralogous styrylpyrone synthases that establish the kavalactone scaffold and the catalytic mechanism of a regio- and stereo-specific kavalactone reductase that produces a subset of chiral kavalactones. We further demonstrate the feasibility of engineering styrylpyrone production in heterologous hosts, thus opening a way to develop kavalactone-based non-addictive psychiatric therapeutics through synthetic biology.


Asunto(s)
Kava/metabolismo , Lactonas/metabolismo , Psicotrópicos/metabolismo , Flavonoides/metabolismo , Kava/enzimología
10.
Elife ; 72018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30324905

RESUMEN

Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.


Asunto(s)
Evolución Molecular , Luciérnagas/genética , Luciferasas de Luciérnaga/genética , Proteínas Luminiscentes/genética , Animales , Escarabajos/enzimología , Escarabajos/genética , Luciérnagas/enzimología , Genoma de los Insectos/genética , Anotación de Secuencia Molecular
11.
Sci Rep ; 6: 38556, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004739

RESUMEN

Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.


Asunto(s)
Copulación/fisiología , Luciérnagas/genética , Luciérnagas/metabolismo , Preferencia en el Apareamiento Animal/fisiología , Metabolómica , Proteómica , Estructuras Animales/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Proteínas de Insectos/metabolismo , Masculino , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/genética , Análisis de Secuencia de ARN , Regulación hacia Arriba/genética
12.
Biochemistry ; 55(24): 3341-4, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27227579

RESUMEN

Firefly luciferin is a specialized metabolite restricted to fireflies (family Lampyridae) and other select families of beetles (order Coleoptera). Firefly luciferin undergoes luciferase-catalyzed oxidation to produce light, thereby enabling the luminous mating signals essential for reproductive success in most bioluminescent beetles. Although firefly luciferin and luciferase have become widely used biotechnological tools, questions remain regarding the physiology and biochemistry of firefly bioluminescence. Here we report sulfoluciferin to be an in vivo derivative of firefly luciferin in fireflies and report the cloning of luciferin sulfotransferase (LST) from the North American firefly Photinus pyralis. LST catalyzes the production of sulfoluciferin from firefly luciferin and the sulfo-donor PAPS. Sulfoluciferin is abundant in several surveyed firefly genera as well as in the bioluminescent elaterid beetle Pyrophorus luminosus at a low level. We propose that sulfoluciferin could serve as a luciferin storage molecule in fireflies and that LST may find use as a new tool to modulate existing biotechnological applications of the firefly bioluminescent system.


Asunto(s)
Luciérnagas/enzimología , Luciferina de Luciérnaga/metabolismo , Sustancias Luminiscentes/metabolismo , Sulfotransferasas/metabolismo , Compuestos de Azufre/metabolismo , Animales , Catálisis , Luz , Mediciones Luminiscentes , Oxidación-Reducción , Filogenia
13.
Cell ; 159(5): 977-978, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416938

RESUMEN

Understanding nitrogen metabolism in plants holds promise for future agricultural improvements. Chellamuthu et al. now identify a feedback regulation in plant nitrogen metabolism through glutamine sensing. This mechanism appears to be conserved from algae to flowering plants with a few surprising exceptions.


Asunto(s)
Glutamina/metabolismo , Plantas/metabolismo
14.
Dev Cell ; 30(2): 151-65, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25043474

RESUMEN

Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap (Yes-associated protein 1) is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and determines epithelial architecture.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Madre Adultas/citología , Diferenciación Celular , Proliferación Celular , Células Epiteliales/citología , Fosfoproteínas/metabolismo , Tráquea/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Células Madre Adultas/metabolismo , Animales , Proteínas de Ciclo Celular , Células Epiteliales/metabolismo , Ratones , Fosfoproteínas/genética , Tráquea/metabolismo , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...