Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 250: 118514, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373545

RESUMEN

Osteoporosis is the most common bone disease, characterized by decreased bone mineral density (BMD) and often associated to decreased muscle mass and function. Metal exposure plays a role in the pathophysiology of osteoporosis and affects also muscle quality. The aim of this study was to assess the association between metal levels in bone and muscle samples and the degeneration of these tissues. A total of 58 subjects (30 male and 28 female) was enrolled and classified in osteoporotic (OP, n = 8), osteopenic (Ope, n = 30) and healthy (CTR, n = 20) subjects, according to BMD measures. Femoral head bone samples and vastus lateralis muscle samples were collected during hip arthroplasty surgeries. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis showed increased levels of Al, Cd and Pb in OP and Ope bone tissue compared to CTR subjects (p = 0.04, p = 0.005 and p = 0.01, respectively). Whereas, increased levels of Co, Cd and Pb were measured in OP and Ope muscle tissues, compared to CTRs (p < 0.001, p = 0.02 and p = 0.01, respectively). In addition, Al, Cd and Pb levels in bone and Cd and Co levels in muscle were negatively correlated with BMD. A negative association among Co, Cd, Cr and Hg levels and muscle fibers diameter was also observed in muscle tissues. This study assessed that metal exposure can affects bone and muscle tissue quality and may contribute to the onset and progression of musculoskeletal diseases such as osteoporosis. Therefore, it is important to implement metal exposure assessment and their impact on disease development, in order to manage and prevent metal accumulation effects on bone and muscle quality.


Asunto(s)
Densidad Ósea , Osteoporosis , Humanos , Proyectos Piloto , Femenino , Masculino , Osteoporosis/metabolismo , Osteoporosis/inducido químicamente , Anciano , Persona de Mediana Edad , Metales/metabolismo , Metales/análisis , Huesos/metabolismo , Huesos/química , Músculo Esquelético/metabolismo
2.
Genes (Basel) ; 14(3)2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980815

RESUMEN

The vitamin D receptor (VDR) regulates bone development and calcium homeostasis, suggesting a central role in musculoskeletal diseases such as osteoporosis (OP). Several studies have examined the contribution of VDR polymorphisms and epigenetic signatures in bone metabolism and OP risk, with sometimes inconclusive results. Our study aimed to explore the association between genetic variability, expression and the methylation pattern of VDR with the risk of OP in a cohort of Caucasian patients. Genomic DNA from 139 OP, 54 osteopenic (Ope) and 73 healthy (CTR) subjects were used for genotyping the rs731236 (TaqI), rs2228570 (FokI) and rs11568820 (Cdx2) polymorphisms of the VDR gene by an allelic discrimination assay. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of VDR expression levels and pyrosequencing analysis of a VDR promoter CpG island were carried out in a subcohort (25 OP and 25 CTR) of subjects. Data obtained showed a significantly higher OP risk for rs11568820 G/A and A/A genotypes (p = 0.05). qRT-PCR revealed lower VDR gene expression levels in the OP group compared to CTR subjects (p = 0.0009), also associated with both the rs11568820 A/A genotype (p = 0.03) and femoral fragility fractures (p = 0.05). No association was found between the methylation pattern of the region analyzed of the VDR promoter and its expression levels. Our results identify a significative association between Cdx2 rs11568820 polymorphism and OP risk. In addition, the VDR transcriptomic profile suggests a putative interconnection with OP progression, providing a useful tool to stratify OP phenotype and fragility fracture risk.


Asunto(s)
Epigénesis Genética , Osteoporosis , Receptores de Calcitriol , Humanos , Densidad Ósea/genética , Osteoporosis/genética , Proyectos Piloto , Receptores de Calcitriol/genética
3.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203278

RESUMEN

The Vitamin D Receptor (VDR) mediates the actions of 1,25-Dihydroxvitamin D3 (1,25(OH)2D3), which has important roles in bone homeostasis, growth/differentiation of cells, immune functions, and reduction of inflammation. Emerging evidences suggest that epigenetic modifications of the VDR gene, particularly DNA methylation, may contribute to the onset and progression of many human disorders. This review aims to summarize the available information on the role of VDR methylation signatures in different pathological contexts, including autoimmune diseases, infectious diseases, cancer, and others. The reversible nature of DNA methylation could enable the development of therapeutic strategies, offering new avenues for the management of these worldwide diseases.


Asunto(s)
Enfermedades Autoinmunes , Receptores de Calcitriol , Humanos , Diferenciación Celular , Metilación de ADN , Epigénesis Genética , Receptores de Calcitriol/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...