Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biochem ; 167(5): 473-482, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943045

RESUMEN

Nascent polypeptides are synthesized on ribosomes starting at the N-terminus and simultaneously begin to fold during translation. We constructed N-terminal fragments of prosubtilisin E containing an intramolecular chaperone (IMC) at N-terminus to mimic cotranslational folding intermediates of prosubtilisin. The IMC-fragments of prosubtilisin exhibited progressive enhancement of their secondary structures and thermostabilities with increasing polypeptide length. However, even the largest IMC-fragment with 72 residues truncated from the C-terminus behaved as a molten globule, indicating the requirement of the C-terminal region to have a stable tertiary structure. Furthermore, truncation of the IMC in the IMC-fragments resulted in aggregation, suggesting that the IMC plays a crucial role to prevent misfolding and aggregation of cotranslational folding intermediates during translation of prosubtilisin polypeptide.


Asunto(s)
Precursores Enzimáticos/metabolismo , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/metabolismo , Pliegue de Proteína , Subtilisinas/metabolismo , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/aislamiento & purificación , Técnicas In Vitro , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/aislamiento & purificación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Estabilidad Proteica , Estructura Secundaria de Proteína , Subtilisinas/química , Subtilisinas/aislamiento & purificación
2.
Biomol NMR Assign ; 2(2): 131-3, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19636887

RESUMEN

Here we report the backbone chemical shifts of the DFP-inhibited mature subtilisin E, which was uniformly labeled by (13)C, (15)N with a supplement of excess calcium.


Asunto(s)
Bacillus/química , Isoflurofato/química , Espectroscopía de Resonancia Magnética/métodos , Subtilisinas/química , Secuencia de Aminoácidos , Isótopos de Carbono/química , Datos de Secuencia Molecular , Peso Molecular , Isótopos de Nitrógeno/química , Estructura Terciaria de Proteína , Protones
3.
J Biol Chem ; 282(36): 26401-8, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17635923

RESUMEN

The HAMP domain plays an essential role in signal transduction not only in histidine kinase but also in a number of other signal-transducing receptor proteins. Here we expressed the EnvZ HAMP domain (Arg(180)-Thr(235)) with the R218K mutation (termed L(RK)) or with L(RK) connected with domain A (Arg(180)-Arg(289)) (termed LA(RK)) of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli, by fusing it with protein S. The L(RK) and LA(RK) proteins were purified after removing protein S. The CD analysis of the isolated L protein revealed that it consists of a random structure or is unstructured. This suggests that the EnvZ HAMP domain by itself is unable to form a stable structure and that this structural fragility may be important for its role in signal transduction. Interestingly the substitution of Ala(193) in the EnvZ HAMP domain with valine or leucine in Tez1A1, a chimeric protein of Tar and EnvZ, caused a constitutive OmpC phenotype. The CD analysis of LA(RK)(A193L) revealed that this mutated HAMP domain possesses considerable secondary structures and that the thermostability of this entire LA(RK)(A193L) became substantially lower than that of LA(RK) or just domain A, indicating that the structure of the HAMP domain with the A193L mutation affects the stability of downstream domain A. This results in cooperative thermodenaturation of domain A with the mutated HAMP domain. These results are discussed in light of the recently solved NMR structure of the HAMP domain from a thermophilic bacterium (Hulko, M., Berndt, F., Gruber, M., Linder, J. U., Truffault, V., Schultz, A., Martin, J., Schultz, J. E., Lupas, A. N., and Coles, M. (2006) Cell 126, 929-940).


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Complejos Multienzimáticos/química , Proteínas Quinasas/química , Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas , Células Quimiorreceptoras/química , Células Quimiorreceptoras/metabolismo , Dicroismo Circular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Histidina Quinasa , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación Missense , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína/genética , Receptores de Superficie Celular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Relación Estructura-Actividad
4.
J Mol Biol ; 366(2): 494-503, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17169372

RESUMEN

The 77 residue propeptide at the N-terminal end of subtilisin E plays an essential role in subtilisin folding as a tailor-made intramolecular chaperone. Upon completion of folding, the propeptide is autoprocessed and removed by subtilisin digestion. This propeptide-mediated protein folding has been used as a paradigm for the study of protein folding. Here, we show by three independent methods, that the propeptide domain and the subtilisin domain show distinctive intrinsic stability that is obligatory for efficient autoprocessing of the propeptide domain. Two tryptophan residues, Trp106 and Trp113, on the surface of subtilisin located on one of the two helices that form the interface between the propeptide and the subtilisin domains play a key role in maintaining the distinctive instability of the propeptide domain, after completion of folding. When either of the Trp residues was substituted with Tyr, the characteristic biphasic heat denaturation profile of two domains unfolding was not observed, resulting in a single transition of denaturation. The results provide evidence that the propeptide not only plays an essential role in subtilisin folding, but upon completion of folding it behaves as an independent domain. Once the propeptide-mediated folding is completed, the propeptide domain is readily eliminated without interference from the subtilisin domain. This "autotomic" behavior of the propeptide may be a prevailing principle in propeptide-mediated protein folding.


Asunto(s)
Precursores Enzimáticos/química , Chaperonas Moleculares/química , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subtilisinas/química , Dicroismo Circular , Hidrólisis , Pliegue de Proteína , Tripsina/farmacología
5.
Curr Opin Biotechnol ; 17(4): 347-52, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16828276

RESUMEN

An ultimate goal for any protein production system is to express only the protein of interest without producing other cellular proteins. To date, there are only two established methods that will allow the successful expression of only the protein of interest: the cell-free in vitro protein synthesis system and the in vivo single-protein production (SPP) system. Although single-protein production can be achieved in cell-free systems, it is not easy to completely suppress the production of cellular proteins during the production of a protein of interest in a living cell. However, the finding of a unique sequence-specific mRNA interferase in Escherichia coli led to the development of the SPP system by converting living cells into a bioreactor that produces only a single protein of interest without producing any cellular proteins. This technology not only provides a new high expression system for proteins, but also offers a novel avenue for protein structural studies.


Asunto(s)
Biotecnología/métodos , Proteínas Recombinantes/biosíntesis , Animales , Sistema Libre de Células/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Reticulocitos/metabolismo
6.
Biochim Biophys Acta ; 1749(1): 15-22, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15848132

RESUMEN

Subtilisin E, a serine protease from Bacillus subtilis, requires an N-terminal propeptide for its correct folding. The propeptide is autocleaved and digested by the subtilisin domain upon proper folding. Here we investigated the individual roles of the three Trp residues within the subtilisin domain (Trp106, Trp113 and Trp241) on propeptide processing, enzymatic activity and stability of subtilisin. When the propeptide processing was examined by SDS-PAGE after refolding by rapid dilution, the mutation at either position Trp106 or Trp113 was found to significantly delay the propeptide processing, while the mutation at Trp241 had no effect. Far-UV circular dichroism (CD) spectra of the mutants revealed that the mutations at the three positions did not affect appreciably the alpha-helix content of subtilisin. Secondary structure thermal unfolding monitored by CD spectroscopy revealed that none of the tryptophan residues had any significant effect on the stability of mature subtilisin. The enzymatic activity measurements showed that only Trp106 plays a major role in the enzymatic activity of subtilisin E. These results demonstrate that both Trp106 and Trp113 play a specific role in propeptide processing and enzymatic activity, while Trp241 plays no considerable role on any of these activities.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Subtilisinas/química , Subtilisinas/metabolismo , Triptófano/química , Proteínas Bacterianas/genética , Precursores Enzimáticos/genética , Mutación , Fragmentos de Péptidos/genética , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subtilisinas/genética , Triptófano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA