Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(5): 2097-2118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799640

RESUMEN

Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.

2.
Opt Lett ; 48(10): 2571-2574, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186711

RESUMEN

Two-dimensional (2D) antiferromagnetic semiconductor chromium thiophosphate (CrPS4) has gradually become a major candidate material for low-dimensional nanoelectromechanical devices due to its remarkable structural, photoelectric characteristics and potentially magnetic properties. Here, we report the experimental study of a new few-layer CrPS4 nanomechanical resonator demonstrating excellent vibration characteristics through the laser interferometry system, including the uniqueness of resonant mode, the ability to work at the very high frequency, and gate tuning. In addition, we demonstrate that the magnetic phase transition of CrPS4 strips can be effectively detected by temperature-regulated resonant frequencies, which proves the coupling between magnetic phase and mechanical vibration. We believe that our findings will promote the further research and applications of the resonator for 2D magnetic materials in the field of optical/mechanical signal sensing and precision measurement.

3.
Opt Lett ; 48(1): 81-84, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563374

RESUMEN

Bolometers based on graphene have demonstrated outstanding performance with high sensitivity and short response time. In situ adjustment of bolometers is very important in various applications, but it is still difficult to implement in many systems. Here we propose a gate-tunable bolometer based on two strongly coupled graphene nanomechanical resonators. Both resonators are exposed to the same light field, and we can measure the properties of one bolometer by directly tracking the resonance frequency shifts, and indirectly measure the other bolometer through mechanical coupling. We find that the sensitivity and the response bandwidth of both bolometers can be independently adjusted by tuning the corresponding gate voltages. Moreover, the properties of the indirectly measured bolometer show a dependence on the coupling between the two resonators, with other parameters being fixed. Our method has the potential to optimize the design of large-scale bolometer arrays, and open new horizons in infrared/terahertz astronomy and communication systems.

4.
Opt Express ; 29(11): 16241-16248, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154191

RESUMEN

Graphene has been considered as one of the best materials to implement mechanical resonators due to their excellent properties such as low mass, high quality factors and tunable resonant frequencies. Here we report the observation of phonon lasing induced by the photonthermal pressure in a few-layer graphene resonator at room temperature, where the graphene resonator and the silicon substrate form an optical cavity. A marked threshold in the oscillation amplitude and a narrowing linewidth of the vibration mode are observed, which confirms a phonon lasing process in the graphene resonator. Our findings will stimulate the studies on phononic phenomena, help to establish new functional devices based on graphene mechanical resonators, and might find potential applications in classical and quantum sensing fields, as well as in information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...