Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38337985

RESUMEN

Chlorophyll (Chl) fluorescence induction (FI) upon a dark-light transition has been widely analyzed to derive information on initial events of energy conversion and electron transfer in photosystem II (PSII). However, currently, there is no analytical solution to the differential equation of QA reduction kinetics, raising a doubt about the fitting of FI by numerical iteration solution. We derived an analytical solution to fit the OJ phase of FI, thereby yielding estimates of three parameters: the functional absorption cross-section of PSII (σPSII), a probability parameter that describes the connectivity among PSII complexes (p), and the rate coefficient for QA- oxidation (kox). We found that σPSII, p, and kox exhibited dynamic changes during the transition from O to J. We postulated that in high excitation light, some other energy dissipation pathways may vastly outcompete against excitation energy transfer from a closed PSII trap to an open PSII, thereby giving the impression that connectivity seemingly does not exist. We also conducted a case study on the urban heat island effect on the heat stability of PSII using our method and showed that higher-temperature-acclimated leaves had a greater σPSII, lower kox, and a tendency of lower p towards more shade-type characteristics.

2.
Physiol Plant ; 175(4): e13981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616008

RESUMEN

Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress. Salt stress retarded the growth of seedlings and caused an outflow of potassium ions from the chloroplast. It also lowered qP (indicator of the oxidation state of QA , the primary quinone electron acceptor in Photosystem II (PSII) and YPSII (average photochemical yield of PSII in the light-adapted state) while increasing YNO+NF (nonregulatory energy dissipation in functional and nonfunctional PSII), accompanied by decreased expression of most light-harvesting, energy-transduction, and electron-transport genes. However, exogenous potassium prevented these effects due to NaCl. Interestingly, lincomycin (an inhibitor of the synthesis of chloroplast-encoded proteins in PSII) significantly diminished the alleviation effect of exogenous potassium on salt stress. We attribute the comprehensive NaCl-induced downregulation of transcription and photosynthetic activities to retrograde signaling induced by reactive oxygen species. There probably exist at least two types of retrograde signaling induced by reactive oxygen species, distinguished by their sensitivity to lincomycin. Exogenous potassium appears to exert its primary effect by ameliorating the trans-thylakoid proton diffusion potential difference via a potassium channel, thereby accelerating ATP synthesis and carbon assimilation, alleviating over-reduction of the photosynthetic electron transport chain, and maintaining the functionality of photosynthetic proteins.


Asunto(s)
Potasio , Protones , Transporte de Electrón , Especies Reactivas de Oxígeno , Cloruro de Sodio/farmacología , Fotosíntesis/fisiología , Estrés Salino , Complejo de Proteína del Fotosistema II/metabolismo , Lincomicina/farmacología
3.
Ann Bot ; 132(1): 163-177, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382489

RESUMEN

BACKGROUND AND AIMS: The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy. METHODS: We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured. KEY RESULTS: The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light. CONCLUSIONS: In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.


Asunto(s)
Prunus domestica , Prunus domestica/metabolismo , Antocianinas/metabolismo , Clorofila , Fotosíntesis/fisiología , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología
5.
Physiol Plant ; 175(2): e13880, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36840627

RESUMEN

At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies. To test the hypothesis, leaf optical spectra, anatomy, chlorophyll a fluorescence, superoxide (O2 ˙- ) concentration, photosystem II photo-susceptibility, and expression of anthocyanin-related genes were investigated. On the adaxial side, light reflectance was the highest for white leaves of A. kolomikta, followed by its pink leaves and white leaves of A. polygama, and the absorptance for white leaves of A. kolomikta was the lowest. Chlorophyll and carotenoid content of white and pink leaves in A. kolomikta were significantly lower than those of A. polygama, while the relative anthocyanin content of pink leaves was the highest. Chloroplasts of palisade cells of white leaves in A. kolomikta were not well developed with a lower maximum quantum efficiency of PSII than the other types of leaves (pink leaves of A. kolomikta and white leaves of A. Polygama at the inner/outer canopy). After high light treatment from the abaxial surface, Fv /Fm decreased to a larger extent for white leaves of A. kolomikta than pink leaf and white leaves of A. polygama, and its non-photochemical quenching was also the lowest. White leaves of A. kolomikta showed higher O2 ˙- concentration compared to pink leaves under the same strong irradiance. The expression levels of anthocyanin biosynthetic genes in pink leaves were higher than in white leaves. These results indicate that white leaves of A. kolomikta apply a reflection strategy for photoprotection, while pink leaves resist photoinhibition via anthocyanin accumulation.


Asunto(s)
Actinidia , Actinidia/metabolismo , Clorofila A/análisis , Antocianinas/metabolismo , Clorofila/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Luz
6.
Plant Cell Physiol ; 64(1): 43-54, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36201365

RESUMEN

Non-photochemical quenching (NPQ) has been regarded as a safety valve to dissipate excess absorbed light energy not used for photochemistry. However, there exists no general consensus on the photoprotective role of NPQ. In the present study, we quantified the Photosystem II (PSII) photo-susceptibilities (mpi) in the presence of lincomycin, under red light given to five shade-acclimated tree species grown in the field. Photosynthetic energy partitioning theory was applied to investigate the relationships between mpi and each of the regulatory light-induced NPQ [Y(NPQ)], the quantum yield of the constitutive nonregulatory NPQ [Y(NO)] and the PSII photochemical yield in the light-adapted state [Y(PSII)] under different red irradiances. It was found that in the low to moderate irradiance range (50-800 µmol m-2 s-1) when the fraction of open reaction centers (qP) exceeded 0.4, mpi exhibited no association with Y(NPQ), Y(NO) and Y(PSII) across species. However, when qP < 0.4 (1,500 µmol m-2 s-1), there existed positive relationships between mpi and Y(NPQ) or Y(NO) but a negative relationship between mpi and Y(PSII). It is postulated that both Y(NPQ) and Y(NO) contain protective and damage components and that using only Y(NPQ) or Y(NO) metrics to identify the photo-susceptibility of a species is a risk. It seems that qP regulates the balance of the two components for each of Y(NPQ) and Y(NO). Under strong irradiance, when both protective Y(NPQ) and Y(NO) are saturated/depressed, the forward electron flow [i.e. Y(PSII)] acts as the last defense to resist photoinhibition.


Asunto(s)
Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II , Aclimatación , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo
7.
Sci Total Environ ; 848: 157840, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35934026

RESUMEN

Although the effects of nitrogen deposition on tree water relations are studied extensively, its impact on the relative sensitivities of stomatal and xylem hydraulic conductance to vapor pressure deficit and water potential is still poorly understood. This study investigated the effects of a 7-year N deposition treatment on the responses of leaf water relations and sensitivity of canopy stomatal conductance to vapor pressure deficit (VPD) and water potential, as well as the sensitivity of branch hydraulic conductance to water potential in a dominant tree species (Quercus wutaishanica) and an associated tree species (Acer mono) in a temperate forest. It was found that the N deposition increased stomatal sensitivity to VPD, decreased stomatal sensitivity to water potential, and increased the vulnerability of the hydraulic system to cavitation in both species. The standardized stomatal sensitivity to VPD, however, was not affected by the N deposition, indicating that the stomata maintained the ability to regulate the water balance under nitrogen deposition condition. Although the increased stomatal sensitivity to VPD could compensate the decreased stomatal sensitivity to water potential to some extent, the combined response would increase the percentage loss of hydraulic conductivity (PLC) when 50 % loss in stomatal conductance occurred, particularly in the dominant species Q. wutaishanica. The result indicates that N deposition would increase the risk of hydraulic failure in those species if the soil and/or air becomes drier under future climate change scenarios. The results of the study can have significant implications on the modelling of ecosystem vulnerability to drought under the scenario of atmospheric nitrogen deposition.


Asunto(s)
Transpiración de Plantas , Árboles , Ecosistema , Nitrógeno , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Suelo , Árboles/fisiología , Agua/fisiología , Xilema/fisiología
8.
Funct Plant Biol ; 49(6): i-iii, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533097

RESUMEN

sion="1.0" encoding="utf-8"?> FP Functional Plant Biology Funct. Plant Biol. 1445-4408 1445-4416 CSIRO Publishing 36 Gardiner Road Clayton VIC 3168 Australia FP22050 10.1071/FP22050 Foreword Advanced technologies in studying plant photosynthesis: principles and applications A. Zavafer et al . https://orcid.org/0000-0002-8905-1618 Zavafer Alonso A Fan Dayong B * https://orcid.org/0000-0001-8150-9535 Murakami Keach C Handling Editor Shabala Sergey Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2001, Australia. Hokkaido Agricultural Research Center (HARC), National Agriculture and Food Research Organization (NARO), 1 Hitsujigaoka, Toyohira, Sapporo 062-8555, Japan. College of Forestry, Beijing Forestry, University, Beijing 100083, China. * Correspondence to: Dayong Fan Hokkaido Agricultural Research Center (HARC), National Agriculture and Food Research Organization (NARO), 1 Hitsujigaoka, Toyohira, Sapporo 062-8555, Japan Email: dayong73fan@163.com 9 May 2022 49 6 Special Issue i iii 9 May 2022 Published: 9 May 2022 © 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing 2022 The Authors The foreword to this special issue on the advanced technologies in studying photosynthesis focuses on the main contributions of Fred Chow, one of the key Australian scientists studying light reactions in plants.

9.
New Phytol ; 235(2): 446-456, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451127

RESUMEN

Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 µmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.


Asunto(s)
Gossypium , Complejo de Proteína del Fotosistema II , Adenosina Trifosfato/metabolismo , Clorofila , Gossypium/metabolismo , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
10.
ACS Appl Mater Interfaces ; 14(14): 16157-16164, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357140

RESUMEN

Exploring the highly active and stable nonprecious metal electrocatalysts is particularly important for the advancement of water electrolysis, whereas it remains a challenge to efficiently improve the intrinsic electrocatalytic activity. Herein, we reasonably constructed a self-supporting nanosheet array material with sulfur incorporated into WP2. Because of the tunability of electronic configuration and the formation of partial metal phase sulfides, the optimized catalyst exhibits a low overpotential of 115 mV at 10 mA cm-2, along with superb durability over 24 h in acidic media. Furthermore, theoretical calculations reveal that sulfur substitution effectively manipulates the local electronic configuration of WP2, which reduces the interaction between the catalyst surface and hydrogen atoms, thus improving the intrinsic activity of the hydrogen evolution reaction. This work provides valuable insight into the rational fabrication of highly efficient flexible electrode materials based on resourceful electrocatalysts for electrochemical water splitting.

11.
Sci Total Environ ; 802: 149643, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461482

RESUMEN

Southwest China is an important biodiversity hotspot in the world and is controlled by the Pacific and Indian Ocean monsoon in the east and west part respectively. However, how abiotic and biotic factors affect the response of vegetation to climate change in different monsoon regions is still not clear. Here we used the annual change rate of growing-season normalized difference vegetation index (NDVI trend) during 1982-2015 to explore the vulnerability of vegetation (forests and shrubs) activity to climate change in southwest China. We examined NDVI trend in relation to: 1) climate change trends, i.e. annual change rate of water and energy availability, indicated by the Palmer Drought Index (PDSI) and potential evapotranspiration (PET), respectively; 2) climatic condition, i.e. mean PDSI and PET during 1982-2015; 3) vegetation height; 4) biome type; 5) monsoon region. The results showed that NDVI generally increased in the Pacific monsoon region, especially in the southern areas, probably because the vegetation under more productive climate were more resistant to climate change, and also because decreased temperature lead to lower evapotranspiration which alleviated the slight drought trend in this region. In contrast, NDVI generally decreased in the Indian Ocean monsoon region which showed more pronounced drought trend, especially in the tall subalpine and tropical forests of Southeast Tibetan Mountains, which supports the "hydraulic limitation hypothesis" that vegetation height interacted with climate change in affecting vegetation vulnerability. Our analysis highlighted the critical roles of different monsoon systems, climate condition and vegetation height in affecting ecosystem vulnerability. We suggest that the (sub)tropical forests in the Pacific monsoon region may have act as an important carbon sink during the past decades, while the tall forests in Southeast Tibetan mountains (a biodiversity center with high carbon stock) are highly vulnerable to climate change and should have priority in ecosystem protection.


Asunto(s)
Cambio Climático , Ecosistema , China , Sequías , Bosques
12.
Funct Plant Biol ; 49(6): 565-572, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34635202

RESUMEN

R is one of the most commonly used analytical tools in the plant sciences. To identify key trends in general reported R use and patterns in photosynthesis research, we explored the frequency of R use in 2966 articles published in the 377 journals with 'photosynthesis' in the title from 2010 to 2019 using the Web of Science search. Solutions provided by each R package cited in the articles or online sources was recorded and classified. The percentage of research articles reporting R use increased linearly from 3.6% in 2010 to 12.5% in 2019. The three main categories of R package solutions were 'general statistical calculations and graph packages' (G); 'photosynthesis special-purpose packages' (S); and 'genetic and evolutionary packages' (E). The top five R packages cited were nlme (G), lme4 (G), multcomp (G), plantecophys (S), and ape (E). The increasing popularity of R use in photosynthesis research is due to its user-friendly and abundant open-source codes online for handling specific issues, particularly in fitting photosynthesis models. These findings are limited by the number of articles and online sources, but they reveal a significant increase in usage in photosynthesis research over the past decade and have a bright prospect in the future.


Asunto(s)
Fotosíntesis , Publicaciones
13.
Photosynth Res ; 149(1-2): 253-258, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34319557

RESUMEN

To finish this special issue, some friends, colleagues and students of Prof. Chow (Emeritus Professor, the Research School of Biology, the Australian National University) have written small tributes to acknowledge not only his eminent career but to describe his wonderful personality.


Asunto(s)
Biofisica/historia , Docentes/historia , Fotosíntesis , Investigadores/historia , Adulto , Australia , China , Historia del Siglo XX , Humanos , Masculino , Persona de Mediana Edad
14.
Anal Sci ; 37(4): 569-573, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33012756

RESUMEN

The chemical-industrial production of organic semiconductors urgently needs a cheap and fast approach to determine the components' proportion of the reaction system. In the present work, the Gaussian peak fitting method was applied to process monobromo and dibromo-substituted perylene diimide mixed solutions' ultraviolet-visible absorption curves. The functional relationship formula between the peak-intensity ratio and the component ratio is then concluded. Finally, field experiments of the perylene imide brominating reaction can be used to confirm that such a formula is able to accurately calculate the proportion of ingredients in the synthesis reaction solution system.

15.
Chem Commun (Camb) ; 57(3): 335-338, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33313614

RESUMEN

A novel kind of highly efficient photoanode was constructed with a SbSI/WO3 heterostructurefabricated through two hydrothermal reactions followed by an iodination reaction (WO3 → Sb2S3/WO3 → SbSI/WO3). After optimizing the solvent [carbon disulfide (CS2)] for SbI3, the SbSI(CS2)/WO3 photoanode shows high-density single-crystalline SbSI nanorods growing along the polar [001] direction on WO3 nanoplates, resulting in excellent photocurrent performance (∼2.1 mA cm-2@1.23 V vs. RHE) and an improved photostability. It is evidenced that the higher crystallinity of SbSI has a positive effect on the photostability of the constructed SbSI/WO3 photoanodes.

16.
Photosynth Res ; 149(1-2): 155-170, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33131005

RESUMEN

It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.


Asunto(s)
Adaptación Fisiológica , Biomasa , Metabolismo de los Hidratos de Carbono , Inundaciones , Inmersión/fisiopatología , Fotosíntesis/fisiología , Estaciones del Año , Agrimonia/fisiología , Amaranthaceae/fisiología , China , Chrysanthemum/fisiología , Cynodon/fisiología , Paspalum/fisiología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Plantaginaceae/fisiología , Poaceae/fisiología
17.
Conserv Physiol ; 8(1): coaa094, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33093958

RESUMEN

Cathaya argyrophylla is an ancient and threatened Pinaceae species endemic to China, but its eco-physiological traits are rarely reported. We hypothesized that Cathaya showed eco-physiological outliers to its Pinaceae relatives, which lead to its current endangered status. Here we collected the photosynthetic capacity (P n, maximum photosynthesis rate) and branchlet hydraulic safety (P 50, the water potential at which a 50% loss in conductivity occurs) of Pinaceae species globally, including our measurements on Cathaya. We applied the phylogenetic comparative methods to investigate: (i) the phylogenetic signal of the two key traits across Pinaceae species, and (ii) the trait-climate relationships and the photosynthesis-cavitation resistance relationship across Pinaceae species. We applied the polygenetic quantile regression (PQR) method to assess whether Cathaya showed eco-physiological outliers to its Pinaceae relatives in terms of cavitation resistance and photosynthetic capacity. It was found that P 50, and to a less extent, P n, had a strong phylogenetic signal consistent with niche conservation among Pinaceae species. Hydraulic safety largely determined non-threatened Pinaceae species' distribution across moisture gradients at the global scale. There was also an adaptive trade-off relationship between P n and P 50. Cathaya is a high cavitation resistant, low photosynthetic capacity species. It showed eco-physiological outliers to its Pinaceae relatives because it had lower P 50 and P n below the 10% quantile boundaries along moisture and/or temperature gradients; also, it was above the 90% quantile boundary of the P n and P 50 relationship across non-endangered Pinaceae species. The PQR output demonstrated that in the subtropical area of China characterized by abundant rainfall, Cathaya has extra high hydraulic safety, suggesting inefficiency of carbon economy associated with either competition or other life history strategies, which lead to its current endangered status.

18.
Front Plant Sci ; 11: 1248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922423

RESUMEN

There are considerable variations in the percentage loss of hydraulic conductivity (PLC) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (K l) via precise control over PLC under variable ΔΨ (water potential differential between soil and leaf) conditions to maintain the -m/b constant (-m: the sensitivity of stomatal conductance to VPD; b: reference stomatal conductance at 1.0 kPa VPD), where VPD is vapor pressure deficit. We used Populus euphratica, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of VPD, stomatal conductance (g s), g s responses to VPD, mid-day minimum leaf water potential (Ψ lmin), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the -m/b ratio was almost constant (=0.6) across all the sites; 2) the average Ψ 50 (the xylem water potential with 50% loss of hydraulic conductivity) was -1.63 MPa, and mid-day PLC ranged from 62 to 83%; 3) there were tight correlations between Ψ 50 and wood density/leaf specific hydraulic conductivity (k l) and between specific hydraulic conductance sensitivity to water potential [d(k s)/dln(-Ψ)] and specific hydraulic conductivity (k s). A modified hydraulic model was applied to investigate the relationship between g s and VPD under variable ΔΨ and K l conditions. It was concluded that P. euphratica was able to control PLC in order to maintain a relatively constant -m/b under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to VPD were well coordinated in order to maintain relatively water homeostasis of P. euphratica in the desert. Model simulations could explain the wide variations of PLC across and within woody species that are often observed in the field.

19.
Front Plant Sci ; 11: 499, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431721

RESUMEN

Rapidly determining leaf vein network patterns and vein densities is biologically important and technically challenging. Current methods, however, are limited to vein contour extraction. Further image processing is difficult, and some leaf vein traits of interest therefore cannot be quantified. In this study, we proposed a novel method for the fast and accurate determination of leaf vein network patterns and vein density. Nine tree species with different leaf characteristics and vein types were applied to verify this method. To overcome the image processing difficulties at the microscopic scale, we adopted the remote object-oriented classification method applied comprehensively in the field of remote sensing research. The key to this approach is to determine the universally applicable leaf vein extraction threshold values (scale parameter, shape parameter, compactness parameter, brightness feature, spectral feature and geometric feature). Based on our analysis, the following recommended threshold values were determined: the scale parameter was 250, the shape parameter was 0.7, the compactness parameter was 0.3, the brightness feature value was 230∼280, the spectral feature value was 180∼230, and the geometric feature value was less than 2. With the optimal extraction parameters applied, the extraction precision was above 96.40% on average for the nine species studied. The leaf vein density calculation rate increased by more than 87.3% compared to that of the traditional methods. The results showed that this method is accurate, fast, flexible and complementary to existing technologies. It is an effective tool for the fast extraction of vein networks and the exploration of leaf vein characteristics, particularly for large-scale studies in plant vein physiology.

20.
Plant Cell Physiol ; 60(10): 2206-2219, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271439

RESUMEN

Photosynthetic induction, a gradual increase in photosynthetic rate on a transition from darkness or low light to high light, has ecological significance, impact on biomass accumulation in fluctuating light and relevance to photoprotection in strong light. However, the experimental quantification of the component electron fluxes in and around both photosystems during induction has been rare. Combining optimized chlorophyll fluorescence, the redox kinetics of P700 [primary electron donor in Photosystem I (PSI)] and membrane inlet mass spectrometry in the absence/presence of inhibitors/mediator, we partially estimated the components of electron fluxes in spinach leaf disks on transition from darkness to 1,000 �mol photons�m-2�s-1 for up to 10 min, obtaining the following findings: (i) the partitioning of energy between both photosystems did not change noticeably; (ii) in Photosystem II (PSII), the combined cyclic electron flow (CEF2) and charge recombination (CR2) to the ground state decreased gradually toward 0 in steady state; (iii) oxygen reduction by electrons from PSII, partly bypassing PSI, was small but measurable; (iv) cyclic electron flow around PSI (CEF1) peaked before becoming somewhat steady; (v) peak magnitudes of some of the electron fluxes, all probably photoprotective, were in the descending order: CEF1 > CEF2 + CR2 > chloroplast O2 uptake; and (vi) the chloroplast NADH dehydrogenase-like complex appeared to aid the antimycin A-sensitive CEF1. The results are important for fine-tuning in silico simulation of in vivo photosynthetic electron transport processes; such simulation is, in turn, necessary to probe partial processes in a complex network of interactions in response to environmental changes.


Asunto(s)
Transporte de Electrón , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/fisiología , Antimicina A/farmacología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Oscuridad , Fluorescencia , Cinética , Luz , Oxidación-Reducción , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Spinacia oleracea/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...