Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 7388, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513552

RESUMEN

The irregular shape of gangue blocks will affect the coordination structure between blocks in the crushed gangue accumulation body, and then affect the engineering mechanical properties of crushed gangue in the process of load-bearing compression. In this paper, through CT scanning experiment, particle flow numerical simulation experiment, and comprehensive application of image processing, 3D reconstruction, FLAC/PFC3D continuum-discrete coupling technology, the gangue digital 3D model and the numerical model of crushed gangue particle flow under triaxial compression condition considering the real shape of the block were obtained. The microscopic fabric evolution law and macroscopic deformation response characteristics of crushed gangue considering triaxial compression condition and different confining pressures were studied. The results show that: (1) the bearing capacity of crushed gangue materials increases with the increase of confining pressure; (2) the block aggregate in the gangue sample is gradually compacted, and the lateral deformation of the sample is changed from "extruding to the axis" to "bulging to the periphery"; (3) the vertical movement of the block decreases gradually from the top to the bottom of the sample, and there is a "triangle area" of block displacement at the top and bottom of the sample; the larger the confining pressure, the smaller the vertical displacement range at the top of the sample; (4) the process of "instability and failure-optimization and reconstruction" of skeleton force chain structure occurs constantly; as confining pressure increases, the stability of skeleton force chain structure and the bearing capacity of crushed gangue sample increases; (5) under the same strain state, the greater the confining pressure, the higher the fragmentation degree of the sample. This study reveals the internal mechanism of macro deformation of crushed gangue under the triaxial compression from the perspective of the mesoscopic fabric evolution. The research results are of great significance for the selection of crushed gangue in engineering application. In addition, the research results also have a significant impact on promoting the reasonable disposal and resource utilization of gangue solid waste and protecting the ecological environment of mining areas.

2.
Sci Rep ; 12(1): 6623, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459255

RESUMEN

The contradiction between the exploitation of coal resources and the protection of the ecological environment in western China is becoming increasingly prominent. Reasonable ecological environment evaluation is the premise for alleviating this contradiction. First, this paper evaluates the eco-environment of Ibei coalfield by combining the genetic projection pursuit model and geographic information system (GIS) and using remote sensing image data and other statistical data of this area. The powerful spatial analysis function of GIS and the advantages of the genetic projection pursuit model in weight calculation have been fully used to improve the reliability of the evaluation results. Furthermore, spatial autocorrelation is used to analyze the spatial characteristics of ecological environment quality in the mining area and plan the specific governance scope. The geographic detector is used to determine the driving factors of the eco-environment of the mining area. The results show that Ibei Coalfield presents a spatially heterogeneous eco-environment pattern. The high-intensity mining area (previously mined area of Ili No.4 Coal Mine) has the worst ecological environment quality, followed by the coal reserve area of Ili No.4 Coal Mine and the planned survey area of Ili No.5 Coal Mine. The eco-environment quality (EEQ) of the study area is affected by both human and natural factors. Mining intensity and surface subsidence are the main human factors affecting the ecological environment in the study area. The main natural factors affecting the ecological environment in the study area are annual average precipitation, elevation, annual average evaporation, NDVI and land use type. Meanwhile, the interaction effect of any two indicators is greater than that of a single indicator. It is also indicated that the eco-environment of the mining area is nonlinearly correlated to impact indicators. The spatial autocorrelation analysis shows three areas that should be treated strategically that are the management area, close attention area and protective area. Corresponding management measures are put forward for different regions. This paper can provide scientific references for mining area eco-environmental protection, which is significant for the sustainability of coal mine projects.


Asunto(s)
Minas de Carbón , China , Carbón Mineral , Minas de Carbón/métodos , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Humanos , Reproducibilidad de los Resultados
3.
Materials (Basel) ; 16(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36614549

RESUMEN

To unravel the permeability variation mechanism of weakly cemented rocks (WCR), the paper conducted triaxial permeability tests on weakly cemented sandstones (WCS) collected from the Jurassic formation in northwest China. The paper identified the correlation of WCS permeability versus porosity, cementation structure, and mineral composition, further developing a model to characterize the WCS stress-damage-permeability relationship. The research indicated that the WCS permeability was initially high due to the naturally high porosity, large pore diameter, and loose particle cementation, thus favoring a significant decline as pore convergence in the compaction stage. In the residual stage, kaolinite and montmorillonite minerals disintegrated into water and narrowed fractures, causing a slight permeability increase from the initial to the maximum and residual stages. The WCS matrix fracturing was phenomenologically accompanied by clay mineral disintegration. By assuming that the matrix can be compressed, jointed, and fractured, the paper defined a damage variable D and accordingly developed a stress-damage-permeability relationship model that incorporated matrix compression, jointing, and fracturing. The model can describe the WCS permeability regime regarding the high initial permeability and slight difference of the maximum and residual permeabilities versus the initial.

4.
Ultrason Imaging ; 37(2): 135-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25139474

RESUMEN

The powerful parallel computation ability of a graphics processing unit (GPU) makes it feasible to perform dynamic receive beamforming However, a real time GPU-based beamformer requires high data rate to transfer radio-frequency (RF) data from hardware to software memory, as well as from central processing unit (CPU) to GPU memory. There are data compression methods (e.g. Joint Photographic Experts Group (JPEG)) available for the hardware front end to reduce data size, alleviating the data transfer requirement of the hardware interface. Nevertheless, the required decoding time may even be larger than the transmission time of its original data, in turn degrading the overall performance of the GPU-based beamformer. This article proposes and implements a lossless compression-decompression algorithm, which enables in parallel compression and decompression of data. By this means, the data transfer requirement of hardware interface and the transmission time of CPU to GPU data transfers are reduced, without sacrificing image quality. In simulation results, the compression ratio reached around 1.7. The encoder design of our lossless compression approach requires low hardware resources and reasonable latency in a field programmable gate array. In addition, the transmission time of transferring data from CPU to GPU with the parallel decoding process improved by threefold, as compared with transferring original uncompressed data. These results show that our proposed lossless compression plus parallel decoder approach not only mitigate the transmission bandwidth requirement to transfer data from hardware front end to software system but also reduce the transmission time for CPU to GPU data transfer.


Asunto(s)
Compresión de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Ultrasonografía/métodos , Algoritmos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA