Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578457

RESUMEN

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , ADN/metabolismo , Metilación de ADN , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Oocitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Adv Sci (Weinh) ; 11(14): e2308496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308190

RESUMEN

During maternal-to-zygotic transition (MZT) in the embryo, mRNA undergoes complex post-transcriptional regulatory processes. However, it is unclear whether and how alternative splicing plays a functional role in MZT. By analyzing transcriptome changes in mouse and human early embryos, dynamic changes in alternative splicing during MZT are observed and a previously unnoticed process of zygotic splicing activation (ZSA) following embryonic transcriptional activation is described. As the underlying mechanism of RNA splicing, splicing factors undergo dramatic maternal-to-zygotic conversion. This conversion relies on the key maternal factors BTG4 and PABPN1L and is zygotic-transcription-dependent. CDK11-dependent phosphorylation of the key splicing factor, SF3B1, and its aggregation with SRSF2 in the subnuclear domains of 2-cell embryos are prerequisites for ZSA. Isoforms generated by erroneous splicing, such as full-length Dppa4, hinder normal embryonic development. Moreover, alternative splicing regulates the conversion of early embryonic blastomeres from totipotency to pluripotency, thereby affecting embryonic lineage differentiation. ZSA is an essential post-transcriptional process of MZT and has physiological significance in generating new life. In addition to transcriptional activation, appropriate expression of transcript isoforms is also necessary for preimplantation embryonic development.


Asunto(s)
Transcriptoma , Cigoto , Humanos , Animales , Ratones , Transcriptoma/genética , Cigoto/metabolismo , Desarrollo Embrionario/genética , Empalme del ARN , Isoformas de Proteínas/genética , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Proteínas Nucleares/genética
3.
Elife ; 122023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37334967

RESUMEN

Human oocyte maturation arrest represents one of the severe conditions for female patients with primary infertility. However, the genetic factors underlying this human disease remain largely unknown. The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that ensures accurate segregation of chromosomes throughout cell cycles. Once the kinetochores of chromosomes are correctly attached to bipolar spindles and the SAC is satisfied, the MAD2L1BP, best known as p31comet, binds mitosis arrest deficient 2 (MAD2) and recruits the AAA+-ATPase TRIP13 to disassemble the mitotic checkpoint complex (MCC), leading to the cell-cycle progression. In this study, by whole-exome sequencing (WES), we identified homozygous and compound heterozygous MAD2L1BP variants in three families with female patients diagnosed with primary infertility owing to oocyte metaphase I (MI) arrest. Functional studies revealed that the protein variants resulting from the C-terminal truncation of MAD2L1BP lost their binding ability to MAD2. cRNA microinjection of full-length or truncated MAD2L1BP uncovered their discordant roles in driving the extrusion of polar body 1 (PB1) in mouse oocytes. Furthermore, the patient's oocytes carrying the mutated MAD2L1BP resumed polar body extrusion (PBE) when rescued by microinjection of full-length MAD2L1BP cRNAs. Together, our studies identified and characterized novel biallelic variants in MAD2L1BP responsible for human oocyte maturation arrest at MI, and thus prompted new therapeutic avenues for curing female primary infertility.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Infertilidad Femenina , Proteínas Nucleares , Animales , Femenino , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Secuenciación del Exoma , Infertilidad Femenina/genética , Proteínas Mad2 , Proteínas Nucleares/genética , Oocitos/citología , Adulto Joven , Adulto , Meiosis
4.
Mol Hum Reprod ; 29(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37068378

RESUMEN

Strategies to maximize individual fertility chances are constant requirements of ART. In vitro folliculogenesis may represent a valid option to create a large source of immature ovarian follicles in ART. Efforts are being made to set up mammalian follicle culture protocols with suitable FSH stimuli. In this study, a new type of recombinant FSH (KN015) with a prolonged half-life is proposed as an alternative to canonical FSH. KN015 supports the in vitro development of mouse follicles from primary to preovulatory stage with higher efficiency than canonical FSH and enhanced post-fertilization development rates of the ovulated oocytes. The use of KN015 also allows us to compare the dynamic transcriptome changes in oocytes and granulosa cells at different stages, in vivo and in vitro. In particular, KN015 facilitates mRNA accumulation in growing mouse oocytes and prevents spontaneous luteinization of granulosa cells in vitro. Novel analyses of transcriptome changes in this study reveal that the in vivo oocytes were more efficient than in vitro oocytes in terms of maternal mRNA clearing during meiotic maturation. KN015 promotes the degradation of maternal mRNA during in vitro oocyte maturation, improves cytoplasmic maturation and, therefore, enhances embryonic developmental potential. These findings establish new transcriptome data for oocyte and granulosa cells at the key stages of follicle development, and should help to widen the use of KN015 as a valid and commercially available hormonal support enabling optimized in vitro development of follicles and oocytes.


Asunto(s)
ARN Mensajero Almacenado , Transcriptoma , Femenino , Ratones , Animales , ARN Mensajero Almacenado/metabolismo , Oogénesis/genética , Oocitos/metabolismo , Células de la Granulosa , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Meiosis , Mamíferos
5.
Mol Psychiatry ; 28(6): 2343-2354, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36690791

RESUMEN

The comorbidity of autism spectrum disorder and anxiety is common, but the underlying circuitry is poorly understood. Here, Tmem74-/- mice showed autism- and anxiety-like behaviors along with increased excitability of pyramidal neurons (PNs) in the prelimbic cortex (PL), which were reversed by Tmem74 re-expression and chemogenetic inhibition in PNs of the PL. To determine the underlying circuitry, we performed conditional deletion of Tmem74 in the PNs of PL of mice, and we found that alterations in the PL projections to fast-spiking interneurons (FSIs) in the dorsal striatum (dSTR) (PLPNs-dSTRFSIs) mediated the hyperexcitability of FSIs and autism-like behaviors and that alterations in the PL projections to the PNs of the basolateral amygdaloid nucleus (BLA) (PLPNs-BLAPNs) mediated the hyperexcitability of PNs and anxiety-like behaviors. However, the two populations of PNs in the PL had different spatial locations, optogenetic manipulations revealed that alterations in the activity in the PL-dSTR or PL-BLA circuits led to autism- or anxiety-like behaviors, respectively. Collectively, these findings highlight that the hyperactivity of the two populations of PNs in the PL mediates autism and anxiety comorbidity through the PL-dSTR and PL-BLA circuits, which may lead to the development of new therapeutics for the autism and anxiety comorbidity.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Complejo Nuclear Basolateral , Ratones , Animales , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Corteza Cerebral , Ansiedad , Corteza Prefrontal
6.
J Adv Res ; 51: 45-57, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36396044

RESUMEN

INTRODUCTION: The R-loop is a naturally formed three-strand nucleic acid structure that recently has been reported to participate in multiple biological processes and helped answer some previously unexplained scientific questions. Meiosis process involves multiple chromatin-related events such as DNA double-stranded breaks (DSB) formation, repairing and transcriptional dynamics. OBJECTIVES: Explore the regulatory roles and physiological functions of R-loops in the mammalian meiosis process. METHODS: In our study, using genome-wide S9.6 CUT & Tag seq, we first mapped the genomic distribution and dynamic changes of R-loop during the meiotic process in mice, from spermatogonia to secondary spermatocytes. And we further explore the role of R-loop in physiological conditions by constructing conditional knockout mice of Rnaseh1, which deleted the R-loop endonuclease before meiosis entry. RESULTS: R-loop predominantly distributes at promoter-related regions and varies across different meiotic stages. By joint analysis with the corresponding transcriptome, we found that the R-loop was closely related to transcription during the meiotic process. The high frequency of promoter-related R-loop in meiotic cells is usually accompanied by high transcription activity, and we further verified this in the leptotene/zygotene to the pachytene transition process. Moreover, the lack of RNase H1 caused sterility in male mice with R-loop accumulation and abnormal DSB repair in spermatocytes. Further analysis showed that abnormal R-loop accumulation in the leptotene/zygotene stages influenced transcriptional regulation in the pachytene stage. CONCLUSION: The mutual regulation of the R-loop and transcription plays an essential role in spermatogenesis. And R-loop is also important for the normal repair process of DSB during meiosis.


Asunto(s)
Roturas del ADN de Doble Cadena , Estructuras R-Loop , Masculino , Ratones , Animales , Meiosis/genética , Espermatogénesis/genética , Espermatocitos , Ratones Noqueados , Mamíferos/genética
7.
Nat Commun ; 13(1): 6621, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333315

RESUMEN

Protein synthesis is an essential step in gene expression during the development of mammalian preimplantation embryos. This is a complex and highly regulated process. The accuracy of the translation initiation codon is important in various gene expression programs. However, the mechanisms that regulate AUG and non-AUG codon initiation in early embryos remain poorly understood. BZW1 is a key factor in determining the mRNA translation start codon. Here, we show that BZW1 is essential for early embryonic development in mice. Bzw1-knockdown embryos fail to undergo compaction, and show decreased blastocyst formation rates. We also observe defects in the differentiation capacity and implantation potential after Bzw1 interference. Further investigation revealed that Bzw1 knockdown causes the levels of translation initiation with CUG as the start codon to increase. The decline in BZW1 levels result in a decrease in protein synthesis in preimplantation embryos, whereas the total mRNA levels are not altered. Therefore, we concluded that BZW1 contributes to protein synthesis during early embryonic development by restricting non-AUG translational initiation.


Asunto(s)
Blastocisto , Implantación del Embrión , Animales , Ratones , Codón , Codón Iniciador , Mamíferos/genética , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN Mensajero/genética
8.
Sci Adv ; 8(43): eabn9016, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306357

RESUMEN

Growing oocytes store a large amount of maternal mRNA to support the subsequent "maternal-zygotic transition" process. At present, it is not clear how the growing oocytes store and process the newly transcribed mRNA under physiological conditions. In this study, we report non-membrane-bound compartments, nuclear poly(A) domains (NPADs), as the hub for newly transcribed mRNA, in developing mouse oocytes. The RNA binding protein PABPN1 promotes the formation of NPAD through its N-terminal disordered domain and RNA-recognized motif by means of liquid phase separation. Pabpn1-null growing oocytes cannot form NPAD normally in vivo and have defects in stability of oocyte growing-related transcripts and formation of long 3' untranslated region isoform transcripts. Ultimately, Pabpn1fl/fl;Gdf9-Cre mice are completely sterile with primary ovarian insufficiency. These results demonstrate that NPAD formed by the phase separation properties of PABPN1-mRNA are the hub of the newly transcribed mRNA and essential for the development of oocytes and female reproduction.


Asunto(s)
Núcleo Celular , Poli A , Animales , Femenino , Ratones , Núcleo Celular/metabolismo , Oocitos/metabolismo , Poli A/genética , Poli A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36178098

RESUMEN

Recent large-scale mRNA sequencing has shown that introns are retained in 5-10% of mRNA, and these events are named intron retention (IR). IR has been recognized as a key mechanism in the regulation of gene expression. However, the role of this mechanism in female reproduction in mammals remains unclear. RNA terminal phosphate cyclase B (RTCB) is a RNA ligase; we found that RTCB conditional knockout mice have premature ovarian failure and that RTCB plays a crucial role in follicular development. RTCB regulated the splicing of transcripts related to DNA methylation and DNA damage repair. In addition, it regulated the resumption of oocyte meiosis by affecting CDK1 activation. Moreover, the loss of RTCB suppressed zygotic genome activation (ZGA) and decreased translation at the global level. In addition, Rtcb deletion resulted in the accumulation of maternal mRNAs containing unspliced introns and in a decline in the overall level of transcripts. As a result, the Rtcb-/- females were sterile. Our study highlights the important role of RTCB-regulated noncanonical alternative splicing in female reproduction.


Asunto(s)
Empalme Alternativo , Aminoacil-ARNt Sintetasas/metabolismo , Fosfatos , Empalme Alternativo/genética , Animales , Femenino , Ligasas/genética , Mamíferos/genética , Ratones , Oocitos , Empalme del ARN , ARN Mensajero/genética
10.
Hum Mutat ; 43(12): 1909-1920, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35946397

RESUMEN

The subcortical maternal complex (SCMC), composed of several maternal-effect genes, is vital for the development of oocytes and early embryos. Variants of SCMC-encoding genes (NLRP2, NLRP5, TLE6, PADI6, and KHDC3L, but not OOEP and ZBED3) are associated with human oocyte maturation dysfunction, fertilization failure, and early embryonic arrest. In this study, we enrolled 118 Chinese patients who experienced recurrent preimplantation embryonic arrest during assisted reproductive technology treatments and performed whole-exome sequencing. We discovered compound heterozygous missense variants (c.110G>C and c.109C>G) in the OOEP gene in one patient who experienced recurrent preimplantation embryonic arrest. Arrested embryos from this affected patient were analyzed by single-cell RNA sequencing, which showed a downregulated transcriptome. In addition, six novel NLRP5 variants (c.971T>A, c.3341T>C, c.1575_1576delAG, c.1830_1831delGT, c.1202C>T, and c.2378T>G) were identified in four patients with arrested and severely fragmented embryos. These suspicious mutations were examined by in vitro studies in HEK293T cells. Western blot analysis and immunofluorescence experiments showed that OOEP and partial NLRP5 mutations caused decreased protein levels. Our findings first demonstrated that biallelic variants in OOEP gene could also cause human early embryonic arrest, similar to other SCMC components. We expanded the genetic mutation spectrum of SCMC genes related to early embryogenesis in humans, especially early embryonic arrest.


Asunto(s)
Desarrollo Embrionario , Infertilidad , Proteínas Mitocondriales , Proteínas Nucleares , Proteínas de Unión al ARN , Humanos , Desarrollo Embrionario/genética , Células HEK293 , Infertilidad/metabolismo , Mutación , Oocitos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Femenino
11.
Nucleic Acids Res ; 50(19): 10896-10913, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35801907

RESUMEN

Post-transcriptional RNA modifications critically regulate various biological processes. N4-acetylcytidine (ac4C) is an epi-transcriptome, which is highly conserved in all species. However, the in vivo physiological functions and regulatory mechanisms of ac4C remain poorly understood, particularly in mammals. In this study, we demonstrate that the only known ac4C writer, N-acetyltransferase 10 (NAT10), plays an essential role in male reproduction. We identified the occurrence of ac4C in the mRNAs of mouse tissues and showed that ac4C undergoes dynamic changes during spermatogenesis. Germ cell-specific ablation of Nat10 severely inhibits meiotic entry and leads to defects in homologous chromosome synapsis, meiotic recombination and repair of DNA double-strand breaks during meiosis. Transcriptomic profiling revealed dysregulation of functional genes in meiotic prophase I after Nat10 deletion. These findings highlight the crucial physiological functions of ac4C modifications in male spermatogenesis and expand our understanding of its role in the regulation of specific physiological processes in vivo.


Asunto(s)
Citidina , Meiosis , Masculino , Ratones , Animales , Meiosis/genética , Citidina/genética , Emparejamiento Cromosómico , Células Germinativas , Mamíferos
13.
Nat Cell Biol ; 24(6): 968-980, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697785

RESUMEN

In mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage. Ribo-lite can also accommodate single oocytes. Combining PAIso-seq to interrogate poly(A) tail lengths, we found a global switch of translatome that closely parallels changes of poly(A) tails upon meiotic resumption. Translation activation correlates with polyadenylation and is supported by polyadenylation signal proximal cytoplasmic polyadenylation elements (papCPEs) in 3' untranslated regions. By contrast, translation repression parallels global de-adenylation. The latter includes transcripts containing no CPEs or non-papCPEs, which encode many transcription regulators that are preferentially re-activated before zygotic genome activation. CCR4-NOT, the major de-adenylation complex, and its key adaptor protein BTG4 regulate translation downregulation often independent of RNA decay. BTG4 is not essential for global de-adenylation but is required for selective gene de-adenylation and production of very short-tailed transcripts. In sum, our data reveal intimate interplays among translation, RNA stability and poly(A) tail length regulation underlying mammalian OET.


Asunto(s)
Desarrollo Embrionario , Oocitos , Regiones no Traducidas 3'/genética , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Oocitos/metabolismo , Poliadenilación , Biosíntesis de Proteínas , ARN Mensajero/genética
14.
Hum Reprod ; 37(8): 1932-1944, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35670744

RESUMEN

STUDY QUESTION: What is the genetic basis of female infertility involving abnormal oocyte morphology with the production of a large first polar body (PB1)? SUMMARY ANSWER: The homozygous missense variant (c.791C>G) and compound missense variants (c.596A>T and c.875C>T) in MOS proto-oncogene, serine/threonine kinase (MOS) (Online Mendelian Inheritance in Man (OMIM) reference: 190060; NM_005372.1) are responsible for abnormal oocyte morphology with the production of a large PB1 to cause infertility in women. WHAT IS KNOWN ALREADY: MOS, an oocyte-specific gene, encodes a serine/threonine-protein kinase that directly phosphorylates mitogen-activated protein kinase (MAPK) kinase (MEK) to activate MAPK (also called extracellular-signal-regulated kinase (ERK)) signal cascade in the oocyte. Female mice lacking Mos remained viable, but infertile because of oocyte symmetric division, spontaneous parthenogenetic activation and early embryonic arrest. Recently, two independent studies demonstrated that female infertility with early embryonic arrest and fragmentation can be caused by biallelic mutations in MOS. However, so far, MOS variants have not been associated with the phenotype of large PB1 extrusion in human oocytes to contribute to female infertility. STUDY DESIGN, SIZE, DURATION: Two independent infertile families characterized by the presence of large PB1 in oocytes were recruited between December 2020 and February 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: Genomic DNA was extracted from the peripheral blood samples of the subjects for whole-exome sequencing. Pedigree analysis was validated by Sanger sequencing. Then, the pathogenic effects of the MOS variants on MOS protein properties and ERK1/2 activation were determined in HEK293 cells and mouse oocytes. MAIN RESULTS AND THE ROLE OF CHANCE: We identified three rare missense variants in MOS, including a homozygous missense variant (c.791C>G) from Patient 1 in Family 1 and two compound missense variants (c.596A>T and c.875C>T) from twin sisters in Family 2. The MOS variants followed a recessive inheritance pattern in infertile patients. All three patients displayed a high percentage of large PB1 extrusion in the oocytes. The three MOS variants could not activate MEK1/2 and ERK1/2 in oocytes and HEK293 cells. In addition, when compared with wild-type MOS, the MOS variants decreased the MOS protein level and attenuated the binding capacity with MEK1. Microinjection of wild-type human MOS complementary RNAs (cRNAs) reversed the symmetric division of oocytes after siMos treatment. In contrast, the three MOS variants demonstrated no rescuing ability. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Owing to the scarcity of human oocyte samples and the associated ethical restrictions, we could not perform the rescue attempt for the study patients. WIDER IMPLICATIONS OF THE FINDINGS: Our findings expand the genetic and phenotypic spectrum of MOS variants in causing female infertility. Our study findings facilitate the early genetic diagnosis of abnormal oocyte morphology characterized as large PB1 that eventually causes infertility in women. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (82071640 and 82001633), Natural Science Foundation of Zhejiang Province (LD22C060001), the Key Projects Jointly Constructed by the Ministry and the Province of Zhejiang Medical and Health Science and Technology Project (WKJ-ZJ-2005), China Postdoctoral Science Foundation (2020M682575 and 2021T140198), the Changsha Municipal Natural Science Foundation (kq2007022) and Hunan Provincial Grant for Innovative Province Construction (2019SK4012). None of the authors declare any competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Infertilidad Femenina , Animales , Femenino , Células HEK293 , Humanos , Infertilidad Femenina/metabolismo , Ratones , Oocitos/metabolismo , Cuerpos Polares , Proteínas Serina-Treonina Quinasas , Serina/metabolismo
15.
Nat Commun ; 13(1): 3191, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680896

RESUMEN

A decrease in oocyte developmental potential is a major obstacle for successful pregnancy in women of advanced age. However, the age-related epigenetic modifications associated with dynamic transcriptome changes, particularly meiotic maturation-coupled mRNA clearance, have not been adequately characterized in human oocytes. This study demonstrates a decreased storage of transcripts encoding key factors regulating the maternal mRNA degradome in fully grown oocytes of women of advanced age. A similar defect in meiotic maturation-triggered mRNA clearance is also detected in aged mouse oocytes. Mechanistically, the epigenetic and cytoplasmic aspects of oocyte maturation are synchronized in both the normal development and aging processes. The level of histone H3K4 trimethylation (H3K4me3) is high in fully grown mouse and human oocytes derived from young females but decreased during aging due to the decreased expression of epigenetic factors responsible for H3K4me3 accumulation. Oocyte-specific knockout of the gene encoding CxxC-finger protein 1 (CXXC1), a DNA-binding subunit of SETD1 methyltransferase, causes ooplasm changes associated with accelerated aging and impaired maternal mRNA translation and degradation. These results suggest that a network of CXXC1-maintained H3K4me3, in association with mRNA decay competence, sets a timer for oocyte deterioration and plays a role in oocyte aging in both mouse and human oocytes.


Asunto(s)
Histonas , Oocitos , Animales , Femenino , Histonas/genética , Histonas/metabolismo , Humanos , Meiosis/genética , Ratones , Oocitos/metabolismo , Embarazo , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/metabolismo , Transactivadores/metabolismo
16.
Nucleic Acids Res ; 50(10): 5599-5616, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640597

RESUMEN

Maternal-to-zygotic transition (MZT) is the first and key step in the control of animal development and intimately related to changes in chromatin structure and histone modifications. H2AK119ub1, an important epigenetic modification in regulating chromatin configuration and function, is primarily catalyzed by PRC1 and contributes to resistance to transcriptional reprogramming in mouse embryos. In this study, the genome-wide dynamic distribution of H2AK119ub1 during MZT in mice was investigated using chromosome immunoprecipitation and sequencing. The results indicated that H2AK119ub1 accumulated in fully grown oocytes and was enriched at the TSSs of maternal genes, but was promptly declined after meiotic resumption at genome-wide including the TSSs of early zygotic genes, by a previously unidentified mechanism. Genetic evidences indicated that ubiquitin-specific peptidase 16 (USP16) is the major deubiquitinase for H2AK119ub1 in mouse oocytes. Conditional knockout of Usp16 in oocytes did not impair their survival, growth, or meiotic maturation. However, oocytes lacking USP16 have defects when undergoing zygotic genome activation or gaining developmental competence after fertilization, potentially associated with high levels of maternal H2AK119ub1 deposition on the zygotic genomes. Taken together, H2AK119ub1 level is declined during oocyte maturation by an USP16-dependent mechanism, which ensures zygotic genome reprogramming and transcriptional activation of essential early zygotic genes.


Asunto(s)
Histonas , Lisina , Animales , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Ratones , Oocitos/metabolismo , Oogénesis/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Cigoto
17.
Cell Mol Life Sci ; 79(2): 92, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072788

RESUMEN

Putative RNA-binding proteins (RBPs), zygote arrested-1 (ZAR1), and ZAR2 (also known as ZAR1L), have been identified as maternal factors that mainly function in oogenesis and embryogenesis. Despite divergence in their spatio-temporal expression among species, the CxxC structure of the C-terminus of ZAR proteins is highly conserved and is reported to be the functional domain for the activity of the RBPs of ZAR proteins. In oocytes from Xenopus laevis and zebrafish, ZAR proteins have been reported to bind to maternal transcripts and inhibit translation in immature growing oocytes, whereas in fully grown mouse oocytes, they promote the translation during meiotic maturation. Thus, ZAR1 and ZAR2 may be required for the maternal-to-zygotic transition by stabilizing the maternal transcriptome in oocytes with partial functional redundancy. In addition, recent studies have suggested non-ovarian expression and function of ZAR proteins, particularly their involvement in tumorigenesis. ZAR proteins are potentially associated with tumor suppressors and can serve as epigenetically inactivated cancer biomarkers. In this review, studies on Zar1/2 are systematically summarized, and some issues that require discussion and further investigation are introduced as perspectives.


Asunto(s)
Proteínas del Huevo/metabolismo , Fertilidad , Oogénesis , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas del Huevo/genética , Femenino , Humanos , Proteínas Supresoras de Tumor/genética
18.
Leukemia ; 36(4): 1123-1131, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35039639

RESUMEN

Hematopoietic stress drives quiescent hematopoietic stem cells (HSCs) to proliferate, generating reactive oxygen species (ROS) and oxidative DNA damage including abasic sites. Such a coupling between rapid DNA replication and a burst of abasic site formation during HSC stress responses, however, presents a challenge to accurately repair abasic sites located in replication-associated single-stranded DNA. Here we show that HMCES, a novel shield of abasic sites, plays pivotal roles in overcoming this challenge upon HSC activation. While HMCES was dispensable for steady-state hematopoiesis, Hmces-deficient HSCs exhibited compromised long-term self-renewal capacity in response to hematopoietic stress such as myeloablation and transplantation. Loss of HMCES resulted in accumulation of DNA lesions due to impaired resolution of abasic sites generated by activation-induced ROS in activated HSCs and broad downregulation of DNA damage response and repair pathways. Moreover, Hmces-deficient mice died from bone marrow failure after exposure to sublethal irradiation, which also produces ROS. Notably, dysregulation of HMCES occurs frequently in acute lymphocytic leukemia (ALL) and is associated with poor clinical outcomes. Together, our findings not only highlighted HMCES as a novel genome protector in activated HSCs, but also position it as a potential selective target against ALL while sparing normal hematopoiesis.


Asunto(s)
Daño del ADN , Células Madre Hematopoyéticas , Animales , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
19.
Biol Reprod ; 107(1): 62-75, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35098307

RESUMEN

RNA-the primary product of the genome-is subject to various biological events during its lifetime. During mammalian gametogenesis and early embryogenesis, germ cells and preimplantation embryos undergo marked changes in the transcriptome, including mRNA turnover. Various factors, including specialized proteins, RNAs, and organelles, function in an intricate degradation system, and the degradation selectivity is determined by effectors and their target mRNAs. RNA homeostasis regulators and surveillance factors function in the global transcriptome of oocytes and somatic cells. Other factors, including BTG4, PABPN1L, the CCR4-NOT subunits, CNOT6L and CNOT7, and TUTs, are responsible for two maternal mRNA avalanches: M- and Z-decay. In this review, we discuss recent advances in mRNA degradation mechanisms in mammalian oocytes and preimplantation embryos. We focused on the studies in mice, as a model mammalian species, and on RNA turnover effectors and the cis-elements in targeting RNAs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oocitos , Animales , Blastocisto/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Mamíferos/genética , Ratones , Oocitos/metabolismo , ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo
20.
J Med Genet ; 59(9): 850-857, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34611029

RESUMEN

BACKGROUND: Recurrent preimplantation embryo developmental arrest (RPEA) is the most common cause of assisted reproductive technology treatment failure associated with identified genetic abnormalities. Variants in known maternal genes can only account for 20%-30% of these cases. The underlying genetic causes for the other affected individuals remain unknown. METHODS: Whole exome sequencing was performed for 100 independent infertile females that experienced RPEA. Functional characterisations of the identified candidate disease-causative variants were validated by Sanger sequencing, bioinformatics and in vitro functional analyses, and single-cell RNA sequencing of zygotes. RESULTS: Biallelic variants in ZFP36L2 were associated with RPEA and the recurrent variant (p.Ser308_Ser310del) prevented maternal mRNA decay in zygotes and HeLa cells. CONCLUSION: These findings emphasise the relevance of the relationship between maternal mRNA decay and human preimplantation embryo development and highlight a novel gene potentially responsible for RPEA, which may facilitate genetic diagnoses.


Asunto(s)
Infertilidad Femenina , Blastocisto , Femenino , Células HeLa , Humanos , Infertilidad Femenina/diagnóstico , Infertilidad Femenina/genética , Embarazo , ARN Mensajero Almacenado , Factores de Transcripción/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...