Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ophthalmic Plast Reconstr Surg ; 40(3): 331-335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38624153

RESUMEN

PURPOSE: Pilot studies suggest that waiting 15 minutes after a subcutaneous tranexamic acid injection is associated with decreased intraoperative bleeding and postoperative ecchymosis in eyelid surgery. The outcomes of commencing eyelid surgery immediately after injection without a waiting period remain unexplored. METHODS: This prospective, randomized, multicenter, double-masked, controlled study examined bilateral symmetric upper and/or lower lid blepharoplasty or ptosis repair. Patients received tranexamic acid in 1 eyelid and control in the contralateral eyelid. The surgeon recorded the side with more intraoperative bleeding. Two masked graders evaluated periocular ecchymosis at postoperative day 0 and postoperative week 1 (POW 1) with a 5-point scale. At POW 1, patients reported subjective grading of bruising as increased on 1 side or similar on both sides. Results were analyzed with Wilcoxon signed-rank and sign tests. RESULTS: Of 130 patients, there was less eyelid ecchymosis on the tranexamic side at postoperative day 0 ( p = 0.001) and POW 1 ( p < 0.001). By surgery type, the 69 levator advancement surgeries had significantly less ecchymosis at postoperative day 0 ( p < 0.001) and POW 1 ( p = 0.001), while upper eyelid blepharoplasty, combined upper and lower lid blepharoplasty, and conjunctivomullerectomy trended toward significance. Of 68 patients reporting a POW 1 grading, 69% reported less bruising on the tranexamic side ( p < 0.001). Intraoperative bleeding was not significantly different between sides ( p = 0.930). CONCLUSIONS: Without a postinjection waiting period, subcutaneous tranexamic acid for eyelid surgery significantly decreased postoperative ecchymosis on postoperative day 0 and POW 1 but did not affect intraoperative bleeding. Subcutaneous tranexamic acid was not associated with any complications.


Asunto(s)
Antifibrinolíticos , Blefaroplastia , Blefaroptosis , Equimosis , Párpados , Hemorragia Posoperatoria , Ácido Tranexámico , Humanos , Ácido Tranexámico/administración & dosificación , Antifibrinolíticos/administración & dosificación , Estudios Prospectivos , Método Doble Ciego , Blefaroplastia/métodos , Blefaroplastia/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Hemorragia Posoperatoria/prevención & control , Hemorragia Posoperatoria/diagnóstico , Hemorragia Posoperatoria/etiología , Anciano , Párpados/cirugía , Equimosis/etiología , Equimosis/prevención & control , Equimosis/diagnóstico , Blefaroptosis/cirugía , Adulto , Pérdida de Sangre Quirúrgica/prevención & control
2.
J Acad Ophthalmol (2017) ; 15(2): e144-e153, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37564162

RESUMEN

Purpose Compare postoperative outcomes in cataract surgery between eyes with standard drop regimen versus dropless protocol by residents. Design Retrospective cohort study between April 1, 2018 and March 31, 2020. Methods The study was performed at Lyndon B. Johnson General Hospital in Houston, Harris County, Texas. A total of 547 eyes (234 dropless vs. 313 standard) with phacoemulsification cataract surgery and minimum of 1-month follow-up with best-corrected visual acuity (BCVA) were included. Dropless received 40 mg sub-Tenon's triamcinolone and intracameral moxifloxacin. Patients were followed at postoperative day 1 (POD1), week 1 (POW1), and month 1 (POM1). Postoperative rate of BCVA better than 20/40 (Good vision) and rate of complications were compared between groups. Results Good vision on POM1 in dropless (77.8%) was noninferior to standard (75.1%, p = 0.80). Complication rate in dropless (28.6%) was noninferior to standard (24.0%, p = 0.13). Intraocular pressure (IOP) elevation on POD1 ( p = 0.041) and anterior chamber (AC) cells on POW1 and POM1 ( p < 0.001) were more frequent in dropless. Mean spherical equivalent at POM1 was better in dropless (-0.37 D [±0.81 D]) compared with standard (-0.61D [±0.77 D], p = 0.001). Early posterior capsular opacification (early PCO) was more frequent in dropless ( p = 0.042). Conclusions Postoperative rate of BCVA better than 20/40 and rate of postoperative complications were noninferior, although dropless had higher rates of AC inflammation, IOP elevation, and early PCO.

4.
J Health Care Poor Underserved ; 33(3): 1146-1154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245152

RESUMEN

Vaccination is a safe and effective way to protect against SARS-CoV-2. Two of the three authorized SARS-CoV-2 vaccines require two doses, presenting logistical challenges. Those with unstable housing face barriers that amplify these challenges. In this study, we utilized a database maintained by Healthcare for the Homeless-Houston to determine the rates of partial vaccination among those with unstable housing in Houston (n=294). We then performed post-hoc analyses to identify predictors of partial vaccination. Our key finding was that 30% of those with unstable housing missed their second dose, a proportion far higher than the national average. Those with permanent supportive housing and those who had a Harris County Gold Card (financial assistance for health care costs) were more likely to return for dose two, while those who were younger, living on the streets, or staying in a temporary homeless shelter were more likely to miss the second dose.


Asunto(s)
COVID-19 , Personas con Mala Vivienda , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vivienda , Humanos , SARS-CoV-2 , Vacunación
5.
Eye (Lond) ; 36(12): 2323-2327, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34857923

RESUMEN

PURPOSE: To describe clinical characteristics and visual outcomes of non-traumatic open globe injuries. SETTING: A level 1 trauma centre in a large urban medical centre. DESIGN: Retrospective study. METHODS: Charts of non-traumatic open globe patients admitted to MHH-TMC from 1/2010 to 3/2015 were reviewed for demographics, cause, clinical characteristics, visual acuity (VA) and enucleation. RESULTS: Thirty eyes were included: 15 (50%) were males with a mean age of 47 (±28) years. All presented with zone 1 injury. Twenty-five (83%) had a perforated corneal ulcer. Presenting VA was count fingers (n = 3, 10%) to NLP (n = 6, 20%). Twenty-four (80%) involved infection, 5 (17%) congenital, 3 (10%) chemical burn and 2 (7%) neurotrophic. Conjunctival injection (n = 22, 77%), corneal opacification (n = 20, 71%) and relative afferent pupillary defect (n = 9, 44%) were common. After treatment, 23 (88%) were worse than 6/60 (20/200), 9 (35%) were NLP and 8 (27%) required enucleation. CONCLUSIONS: Often non-traumatic open globe injuries are zone 1 and due to perforated infectious ulcers. Compared to previously reported traumatic injuries, these have higher rates of enucleation (27% vs 8%) and poorer final VA (88% vs 68% worse than 6/60 20/200).


Asunto(s)
Lesiones Oculares Penetrantes , Humanos , Masculino , Persona de Mediana Edad , Femenino , Lesiones Oculares Penetrantes/diagnóstico , Lesiones Oculares Penetrantes/cirugía , Lesiones Oculares Penetrantes/etiología , Estudios Retrospectivos , Agudeza Visual , Trastornos de la Visión , Pronóstico
6.
Nature ; 599(7886): 594-598, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34819678

RESUMEN

Light-emitting diodes (LEDs) based on perovskite quantum dots have shown external quantum efficiencies (EQEs) of over 23% and narrowband emission, but suffer from limited operating stability1. Reduced-dimensional perovskites (RDPs) consisting of quantum wells (QWs) separated by organic intercalating cations show high exciton binding energies and have the potential to increase the stability and the photoluminescence quantum yield2,3. However, until now, RDP-based LEDs have exhibited lower EQEs and inferior colour purities4-6. We posit that the presence of variably confined QWs may contribute to non-radiative recombination losses and broadened emission. Here we report bright RDPs with a more monodispersed QW thickness distribution, achieved through the use of a bifunctional molecular additive that simultaneously controls the RDP polydispersity while passivating the perovskite QW surfaces. We synthesize a fluorinated triphenylphosphine oxide additive that hydrogen bonds with the organic cations, controlling their diffusion during RDP film deposition and suppressing the formation of low-thickness QWs. The phosphine oxide moiety passivates the perovskite grain boundaries via coordination bonding with unsaturated sites, which suppresses defect formation. This results in compact, smooth and uniform RDP thin films with narrowband emission and high photoluminescence quantum yield. This enables LEDs with an EQE of 25.6% with an average of 22.1 ±1.2% over 40 devices, and an operating half-life of two hours at an initial luminance of 7,200 candela per metre squared, indicating tenfold-enhanced operating stability relative to the best-known perovskite LEDs with an EQE exceeding 20%1,4-6.

7.
Health Equity ; 5(1): 324-328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34036216

RESUMEN

Asian American medical students (AAMSs) face significant bias in the medical learning environment and are more likely than White students to perceive their school climate negatively. Little is known about the factors that contribute to AAMSs' negative experiences. This perspective aims to describe AAMSs' experiences with diversity and inclusion efforts using survey data from a midwest regional conference, Asians in Medicine: A Conference on Advocacy and Allyship. AAMS respondents reported feeling excluded from diversity and inclusion efforts and conference participants advocated for institutional culture and climate assessments stratified by race and disaggregated into Asian subgroups.

8.
Angew Chem Int Ed Engl ; 60(29): 16164-16170, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33982380

RESUMEN

The all-inorganic nature of CsPbI3 perovskites allows to enhance stability in perovskite devices. Research efforts have led to improved stability of the black phase in CsPbI3 films; however, these strategies-including strain and doping-are based on organic-ligand-capped perovskites, which prevent perovskites from forming the close-packed quantum dot (QD) solids necessary to achieve high charge and thermal transport. We developed an inorganic ligand exchange that leads to CsPbI3 QD films with superior phase stability and increased thermal transport. The atomic-ligand-exchanged QD films, once mechanically coupled, exhibit improved phase stability, and we link this to distributing strain across the film. Operando measurements of the temperature of the LEDs indicate that KI-exchanged QD films exhibit increased thermal transport compared to controls that rely on organic ligands. The LEDs exhibit a maximum EQE of 23 % with an electroluminescence emission centered at 640 nm (FWHM: ≈31 nm). These red LEDs provide an operating half-lifetime of 10 h (luminance of 200 cd m-2 ) and an operating stability that is 6× higher than that of control devices.

9.
Sci Adv ; 6(42)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33055155

RESUMEN

It remains a central challenge to the information display community to develop red light-emitting diodes (LEDs) that meet demanding color coordinate requirements for wide color gamut displays. Here, we report high-efficiency, lead-free (PEA)2SnI4 perovskite LEDs (PeLEDs) with color coordinates (0.708, 0.292) that fulfill the Rec. 2100 specification for red emitters. Using valeric acid (VA)-which we show to be strongly coordinated to Sn2+-we slow the crystallization rate of the perovskite, improving the film morphology. The incorporation of VA also protects tin from undesired oxidation during the film-forming process. The improved films and the reduced Sn4+ content enable PeLEDs with an external quantum efficiency of 5% and an operating half-life exceeding 15 hours at an initial brightness of 20 cd/m2 This work illustrates the potential of Cd- and Pb-free PeLEDs for display technology.

10.
Nat Commun ; 11(1): 3674, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699223

RESUMEN

Metal halide perovskites have emerged as promising candidates for solution-processed blue light-emitting diodes (LEDs). However, halide phase segregation - and the resultant spectral shift - at LED operating voltages hinders their application. Here we report true-blue LEDs employing quasi-two-dimensional cesium lead bromide with a narrow size distribution of quantum wells, achieved through the incorporation of a chelating additive. Ultrafast transient absorption spectroscopy measurements reveal that the chelating agent helps to control the quantum well thickness distribution. Density functional theory calculations show that the chelating molecule destabilizes the lead species on the quantum well surface and that this in turn suppresses the growth of thicker quantum wells. Treatment with γ-aminobutyric acid passivates electronic traps and enables films to withstand 100 °C for 24 h without changes to their emission spectrum. LEDs incorporating γ-aminobutyric acid-treated perovskites exhibit blue emission with Commission Internationale de l'Éclairage coordinates of (0.12, 0.14) at an external quantum efficiency of 6.3%.

11.
Nat Nanotechnol ; 15(8): 668-674, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32632321

RESUMEN

Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids-necessary for device fabrication-requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V-1 s-1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%.

12.
Nano Lett ; 20(7): 5284-5291, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543860

RESUMEN

Shortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm. We posited that a blade-coating strategy could enable thick QD films. We developed a ligand exchange with an additional resolvation step that enabled the dispersion of SWIR-CQDs. We then engineered a quaternary ink that combined high-viscosity solvents with short QD stabilizing ligands. This ink, blade-coated over a mild heating bed, formed micron-thick SWIR-CQD films. These SWIR-CQD solar cells achieved short-circuit current densities (Jsc) that reach 39 mA cm-2, corresponding to the harvest of 60% of total photons incident under AM1.5G illumination. External quantum efficiency measurements reveal both the first exciton peak and the closest Fabry-Perot resonance peak reaching approximately 80%-this is the highest unbiased EQE reported beyond 1400 nm in a solution-processed semiconductor.

13.
Front Neurosci ; 14: 432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435184

RESUMEN

The past decade has witnessed an explosion in applications for neural recording and stimulation in the treatment of clinical disorders. Neuromodulatory approaches are now a mainstay of care for essential tremor and Parkinson's disease, and are expanding rapidly into a wide range of other neurological and psychiatric diseases. In parallel, advancements in endovascular approaches to cerebrovascular diseases have resulted in minimally invasive techniques that deliver devices to neural tissue in the central and peripheral nervous systems, with significantly improved safety and efficacy. In this review, we discuss the history of endovascular neural recording and stimulation, its current progress, and applications for neurological disease.

14.
J Am Chem Soc ; 142(11): 5126-5134, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32150404

RESUMEN

Metal halide perovskites show promise for light-emitting diodes (LEDs) owing to their facile manufacture and excellent optoelectronic performance, including high color purity and spectral stability, especially in the green region. However, for blue perovskite LEDs, the emission spectrum line width is broadened to over 25 nm by the coexistence of multiple reduced-dimensional perovskite domains, and the spectral stability is poor, with an undesirable shift (over 7 nm) toward longer wavelengths under operating conditions, degradation that occurs due to phase separation when mixed halides are employed. Here we demonstrate chloride insertion-immobilization, a strategy that enables blue perovskite LEDs, the first to exhibit narrowband (line width of 18 nm) and spectrally stable (no wavelength shift) performance. We prepare bromide-based perovskites and then employ organic chlorides for dynamic treatment, inserting and in situ immobilizing chlorides to blue-shift and stabilize the emission. We achieve sky-blue LEDs with a record luminance over 5100 cd/m2 at 489 nm, and an operating half-life of 51 min at 1500 cd/m2. By device structure optimization, we further realize an improved EQE of 5.2% at 479 nm and an operating half-life of 90 min at 100 cd/m2.

15.
Nat Commun ; 11(1): 170, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924790

RESUMEN

Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 ± 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m-2; their maximum luminance is 4.5 × 104 cd m-2 (corresponding to an EQE of 5%); and, at 4000 cd m-2, they achieve an operational half-lifetime of 3.5 h.

16.
Adv Mater ; 31(48): e1904304, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31600007

RESUMEN

Infrared-absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport. Lead bromide passivated CQDs have higher charge mobilities, but worse passivation. Here a mixed lead-halide (MPbX) ligand exchange is introduced that enables thorough surface passivation without compromising transport. MPbX-PbS CQDs exhibit properties that exceed the best features of single lead-halide PbS CQDs: they show improved passivation (43 ± 5 meV vs 44 ± 4 meV in Stokes shift) together with higher charge transport (4 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 vs 3 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 in mobility). This translates into PV devices having a record IR open-circuit voltage (IR Voc ) of 0.46 ± 0.01 V while simultaneously having an external quantum efficiency of 81 ± 1%. They provide a 1.7× improvement in the power conversion efficiency of IR photons (>1.1 µm) relative to the single lead-halide controls reported herein.

17.
ACS Nano ; 13(10): 11988-11995, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31545597

RESUMEN

Colloidal quantum dots (CQDs) have recently gained attention as materials for manufacturing optoelectronic devices in view of their tunable light absorption and emission properties and compatibility with low-temperature thin-film manufacture. The realization of CQD inkjet-printed infrared photodetectors has thus far been hindered by incompatibility between the chemical processes that produce state-of-the-art CQD solution-exchanged inks and the requirements of ink formulations for inkjet materials processing. To achieve inkjet-printed CQD solids with a high degree of reproducibility, as well as with the needed morphological and optoelectronic characteristics, we sought to overcome the mismatch among these processing conditions. In this study, we design CQD inks by simultaneous evaluation of requirements regarding ink colloidal stability, jetting conditions, and film morphology for different dots and solvents. The new inks remain colloidally stable, achieved through a design that suppresses the reductant properties of amines on the dots' surface. After drop ejection from the nozzle, the quantum dot material is immobilized on the substrate surface due to the rapid evaporation of the low boiling point amine-based compound. Concurrently, the high boiling point solvent allows for the formation of a thin film of high uniformity, as is required for the fabrication of high-performance IR photodetectors. We fabricate inkjet-printed photodetectors exhibiting the highest specific detectivities reported to date (above 1012 Jones across the IR) in an inkjet-printed quantum dot film. As a patternable CMOS-compatible process, the work offers routes to integrated sensing devices and systems.

18.
ACS Nano ; 13(10): 11122-11128, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31539477

RESUMEN

Colloidal quantum dots (CQDs) allow broad tuning of the bandgap across the visible and near-infrared spectral regions. Recent advances in applying CQDs in light sensing, photovoltaics, and light emission have heightened interest in achieving further synthetic improvements. In particular, improving monodispersity remains a key priority in order to improve solar cells' open-circuit voltage, decrease lasing thresholds, and improve photodetectors' noise-equivalent power. Here we utilize machine-learning-in-the-loop to learn from available experimental data, propose experimental parameters to try, and, ultimately, point to regions of synthetic parameter space that will enable record-monodispersity PbS quantum dots. The resultant studies reveal that adding a growth-slowing precursor (oleylamine) allows nucleation to prevail over growth, a strategy that enables record-large-bandgap (611 nm exciton) PbS nanoparticles with a well-defined excitonic absorption peak (half-width at half-maximum (hwhm) of 145 meV). At longer wavelengths, we also achieve improved monodispersity, with an hwhm of 55 meV at 950 nm and 24 meV at 1500 nm, compared to the best published to date values of 75 and 26 meV, respectively.

19.
Adv Mater ; 31(33): e1901745, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31222877

RESUMEN

Colloidal quantum dots (CQDs) can be used to extend the response of solar cells, enabling the utilization of solar power that lies to the red of the bandgap of c-Si and perovskites. To achieve largely complete absorption of infrared (IR) photons in CQD solids requires thicknesses on the micrometer range; however, this exceeds the typical diffusion lengths (≈300 nm) of photoexcited charges in these materials. Nanostructured metal back electrodes that grant the cell efficient IR light trapping in thin active layers with no deterioration of the electrical properties are demonstrated. Specifically, a new hole-transport layer (HTL) is developed and directly nanostructured. Firstly, a material set to replace conventional rigid HTLs in CQD devices is developed with a moldable HTL that combines the mechanical and chemical requisites for nanoimprint lithography with the optoelectronic properties necessary to retain efficient charge extraction through an optically thick layer. The new HTL is nanostructured in a 2D lattice and conformally coated with MoO3 /Ag. The photonic structure in the back electrode provides a record photoelectric conversion efficiency of 86%, beyond the Si bandgap, and a 22% higher IR power conversion efficiency compared to the best previous reports.

20.
Nanoscale ; 11(22): 10774-10781, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31134264

RESUMEN

Colloidal quantum dots have garnered significant interest in optoelectronics, particularly in quantum dot solar cells (QDSCs). Here we report QDSCs fabricated using a ligand that is modified, following film formation, such that it becomes an efficient hole transport layer. The ligand, O-((9H-fluoren-9-yl)methyl) S-(2-mercaptoethyl) carbonothioate (FMT), contains the surface ligand 1,2-ethanedithiol (EDT) protected at one end using fluorenylmethyloxycarbonyl (Fmoc). The strategy enables deprotection following colloidal deposition, producing films containing quantum dots whose surfaces are more thoroughly covered with the remaining EDT molecules. To compare fabrication methods, we deposited CQDs onto the active layer: in one case, the traditional EDT-PbS/EDT-PbS is used, while in the other EDT-PbS/FMT-PbS is used. The devices based on the new EDT/FMT match the PCE values of EDT/EDT controls, and maintain a higher PCE over an 18 day storage interval, a finding we attribute to an increased thiol coverage using the FMT protocol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...