Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Structure ; 32(1): 18-23.e2, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37924810

RESUMEN

Leptin is a multi-potency cytokine that regulates various physiological functions, including weight control and energy homeostasis. Signaling of leptin is also important in many aging-related diseases. Leptin is required for the noncovalent crosslinking of different extracellular domains of leptin receptors, which is critical for receptor activation and downstream signaling. Nevertheless, the structure of intact apo-form leptin and the structural transition leptin undergoes upon receptor binding are not fully understood yet. Here, we determined the monomeric structure of wild-type human leptin by solution-state nuclear magnetic resonance spectroscopy. Leptin contains an intrinsically disordered region (IDR) in the internal A-B loop and the flexible helix E in the C-D loop, both of which undergo substantial local structural changes when leptin binds to its receptor. Our findings provide further insights into the molecular mechanisms of leptin signaling.


Asunto(s)
Leptina , Humanos , Homeostasis , Leptina/química , Leptina/metabolismo , Conformación Molecular , Unión Proteica
2.
Biomol NMR Assign ; 17(2): 265-268, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37796383

RESUMEN

Leptin is an adipose tissue-expressed 16-kDa hormone encoded by the ob/ob gene. It serves a crucial role in regulating diverse physiological processes, including body weight control, energy homeostasis regulation, promotion of cell proliferation, and more. Emerging research has also revealed potential implications of leptin in various aging-related diseases, suggesting multifaceted physiological roles of leptin. Structural investigation of wild-type leptin in apo form is of particular importance to understand its conformational plasticity for receptor interaction and recognition. Here, we report backbone and side-chain resonance assignments of wild-type human leptin as a basis for structural and functional studies on leptin-mediated signaling.


Asunto(s)
Tejido Adiposo , Leptina , Humanos , Leptina/genética , Resonancia Magnética Nuclear Biomolecular
3.
Sci Adv ; 9(36): eadi8157, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672581

RESUMEN

Virtually all living cells are covered with glycans. Their structures are primarily controlled by the specificities of glycosyltransferases (GTs). GTs typically adopt one of the three folds, namely, GT-A, GT-B, and GT-C. However, what defines their specificities remain poorly understood. Here, we developed a genetic glycoengineering platform by reprogramming the capsular polysaccharide pathways in Streptococcus pneumoniae to interrogate GT specificity and manipulate glycan structures. Our findings suggest that the central cleft of GT-B enzymes is important for determining acceptor specificity. The constraint of the glycoengineering platform was partially alleviated when the specificity of the precursor transporter was reduced, indicating that the transporter contributes to the overall fidelity of glycan synthesis. We also modified the pneumococcal capsule to produce several medically important mammalian glycans, as well as demonstrated the importance of regiochemistry in a glycosidic linkage on binding lung epithelial cells. Our work provided mechanistic insights into GT specificity and an approach for investigating glycan functions.


Asunto(s)
Glicosiltransferasas , Streptococcus pneumoniae , Animales , Glicosiltransferasas/genética , Streptococcus pneumoniae/genética , Células Epiteliales , Glicósidos , Proteínas de Transporte de Membrana , Mamíferos
4.
Protein Sci ; 32(10): e4761, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37593853

RESUMEN

The pupal cuticle protein from Aedes aegypti (AaPC) inhibits dengue virus (DENV) infection; however, the underlying mechanism of this inhibition remains unknown. Here, we report that AaPC is an intrinsically disordered protein and interacts with domain I/II of the DENV envelope protein via residues Asp59, Asp61, Glu71, Asp73, Ser75, and Asp80. AaPC can directly bind to and cause the aggregation of DENV, which in turn blocks virus infection during the virus-cell fusion stage. AaPC may also influence viral recognition and attachment by interacting with human immune receptors DC-SIGN and CD4. These findings enhance our understanding of the role of AaPC in mitigating viral infection and suggest that AaPC is a potential target for developing inhibitors or antibodies to control dengue virus infection.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Humanos , Virus del Dengue/fisiología , Pupa , Mosquitos Vectores
5.
Bioorg Med Chem Lett ; 91: 129373, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315697

RESUMEN

Efforts directed at improving potency and preparing structurally different TYK2 JH2 inhibitors from the first generation of compounds such as 1a led to the SAR study of new central pyridyl based analogs 2-4. The current SAR study resulted in the identification of 4h as a potent and selective TYK2 JH2 inhibitor with distinct structural differences from 1a. In this manuscript, the in vitro and in vivo profiles of 4h are described. The hWB IC50 of 4h was shown as 41 nM with 94% bioavailability in the mouse PK study.


Asunto(s)
Piridinas , TYK2 Quinasa , Ratones , Animales , Relación Estructura-Actividad , Piridinas/farmacología
6.
Am J Pathol ; 192(8): 1186-1198, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640677

RESUMEN

This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK+ T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK+ TCL cell growth in vivo. The expression of the HES1 gene was induced by NPM-ALK through activation of STAT3, which bound to the gene's promoter and induced the gene's transcription. NPM-ALK also directly phosphorylated HES1 protein. In turn, HES1 up-regulated and down-regulated in ALK+ TCL cells, the expression of numerous genes, protein products of which are involved in key cell functions, such as cell proliferation and viability. Among the genes inhibited by HES1 was thioredoxin-interacting protein (TXNIP), encoding a protein implicated in promotion of cell death in various types of cells. Accordingly, ALK+ TCL cells and tissues lacked expression of TXNIP, and its transcription was co-inhibited by HES1 and STAT3 in an NPM-ALK-dependent manner. Finally, the induced expression of TXNIP induced massive apoptotic cell death of ALK+ TCL cells. The results reveal a novel NPM-ALK-controlled pro-oncogenic regulatory network and document an important role of HES and TXNIP in the NPM-ALK-driven oncogenesis, with the former protein displaying oncogenic and the latter tumor suppressor properties.


Asunto(s)
Quinasa de Linfoma Anaplásico , Proteínas Portadoras , Linfoma de Células T , Factor de Transcripción HES-1 , Quinasa de Linfoma Anaplásico/genética , Carcinogénesis/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Oncogenes , Fosforilación , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
7.
Biomacromolecules ; 23(4): 1643-1651, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35312302

RESUMEN

Spider silk is self-assembled from silk proteins or spidroins. C-terminal domains (CTDs) of various types of spidroins are relatively conserved in amino acid sequences and are suggested to adopt similar structures and perform similar functional roles in spidroin storage and silk formation. Here, we solved the structure of the CTD from a capture-spiral silk protein (CTDFl) and characterized its stability and fibril formation in the presence and absence of a reducing agent at different pH values. CTDFl adopts a dimeric structure with 8 helices, but the CTDs of other types of spidroins exist in a domain-swapped dimeric structure with 10 helices. Despite the structural differences, CTDFl is pH-responsive in stability and fibril formation, similar to the CTDs from minor and major ampullate spidroins. Thus, the functional role of CTDs in silk fiber formation seems conserved. Comparing wild-type CTDFl and its mutants, we found that the pH-responsive behavior results from the protonation of H76, which is conserved from different spider species. In addition, the fibril formation rate of CTDFl correlates with its instability, suggesting that structural changes are involved in fibril formation.


Asunto(s)
Fibroínas , Arañas , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos , Fibroínas/química , Fibroínas/genética , Estructura Secundaria de Proteína , Seda/química , Arañas/metabolismo
8.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641455

RESUMEN

Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29-31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Chenopodium quinoa/química , Fragmentos de Péptidos/farmacología , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Lectinas de Plantas/química , Lectinas de Plantas/farmacología , Proteínas de Plantas/química , Conformación Proteica , Homología de Secuencia
9.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34531321

RESUMEN

Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.


Asunto(s)
Fibroínas/química , Animales , Materiales Biocompatibles , Fibroínas/metabolismo , Seda/química , Seda/metabolismo , Arañas/metabolismo
10.
Biomol NMR Assign ; 15(2): 475-477, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34436735

RESUMEN

Spider silk is renowned for its excellent mechanical properties. Among six types of silk and one silk glue produced by different abdominal glands for various purposes, tubuliform (eggcase) silk is unique due to its high serine and low glycine content. Eggcase silk is spun from at least two spidroins, tubuliform spidroin 1 (TuSp1) and TuSp2. TuSp1 and TuSp2 were identified as the major and the minor components in tubuliform glands, respectively. TuSp2 consists of multiple repetitive (RP) domains with short terminal tails and shares very limited homology to all known spidroins. Here we report backbone and side chain resonance assignments of TuSp2-RP as a basis for structural and functional studies on eggcase silk formation.


Asunto(s)
Fibroínas
11.
Biophys J ; 120(12): 2444-2453, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33894215

RESUMEN

The viral protease domain (NS3pro) of dengue virus is essential for virus replication, and its cofactor NS2B is indispensable for the proteolytic function. Although several NS3pro-NS2B complex structures have been obtained, the dynamic property of the complex remains poorly understood. Using NMR relaxation techniques, here we found that NS3pro-NS2B exists in both closed and open conformations that are in dynamic equilibrium on a submillisecond timescale in aqueous solution. Our structural information indicates that the C-terminal region of NS2B is disordered in the minor open conformation but folded in the major closed conformation. Using mutagenesis, we showed that the closed-open conformational equilibrium can be shifted by changing NS2B stability. Moreover, we revealed that the proteolytic activity of NS3pro-NS2B correlates well with the population of the closed conformation. Our results suggest that the closed-open conformational equilibrium can be used by both nature and humanity to control the replication of dengue virus.


Asunto(s)
Virus del Dengue , Virus del Dengue/metabolismo , Conformación Molecular , Péptido Hidrolasas , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética
12.
FEBS Lett ; 595(1): 145-154, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098102

RESUMEN

Arabidopsis thaliana CYP71 (AtCYP71) is a chromatin-remodeling protein that promotes shoot apical meristem (SAM) differentiation. The N terminus of AtCYP71 contains a noncanonical WD domain, and the C terminus contains an enzymatic peptidyl-prolyl isomerase (PPIase) cyclophilin (CYP) domain. To date, there has been no characterization of CYP71, and its mode of action remains unknown. Here, we report the crystal structure of the CYP domain of AtCYP71 at 1.9 Å resolution. The structure shows key differences when compared to the canonical CYP fold of human CypA. To the best our knowledge, this is the first A. thaliana CYP structure with a conserved active site loop. Using nuclear magnetic resonance spectroscopy, we demonstrate that the CYP domain is active toward histone H3. Our findings suggest that the PPIase activity of the CYP domain is important for the function of AtCYP71 in chromatin remodeling during organogenesis.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Ciclofilinas/química , Histonas/metabolismo , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
13.
Curr Biol ; 31(2): 271-282.e5, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33186551

RESUMEN

Multicellular organisms employ fluid transport networks to overcome the limit of diffusion and promote essential long-distance transport. Connectivity and pressurization render these networks especially vulnerable to wounding. To mitigate this risk, animals, plants, and multicellular fungi independently evolved elaborate clotting and plugging mechanisms. In the septate filamentous fungi, membrane-bound organelles plug septal pores in wounded hyphae. By contrast, vegetative hyphae in the early-diverging Mucoromycota are largely aseptate, and how their hyphae respond to wounding is unknown. Here, we show that wounding in the Mucorales leads to explosive protoplasmic discharge that is rapidly terminated by protoplasmic gelation. We identify Mucoromycota-specific Gellin proteins, whose loss of function leads to uncontrolled wound-induced protoplasmic bleeding. Gellins contain ten related ß-trefoil Gll domains, each of which possesses unique features that impart distinct gelation-related properties: some readily unfold and form high-order sheet-like structures when subjected to mechanical force from flow, while others possess hydrophobic motifs that enable membrane binding. In cell-free reconstitution, sheet-like structures formed by a partial Gellin incorporate membranous organelles. Together, these data define a mechanistic basis for regulated protoplasmic gelation, and provide new design principles for the development of artificial flow-responsive biomaterials.


Asunto(s)
Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Mucor/fisiología , Proteínas Fúngicas/genética , Hidrodinámica , Hifa/citología , Microscopía Intravital , Mutación con Pérdida de Función , Mucor/citología , Dominios Proteicos , Multimerización de Proteína/fisiología
14.
Int J Biol Macromol ; 166: 1141-1148, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157141

RESUMEN

Spider silk has remarkable physical and biocompatible properties. Investigation of structure-function relationship and self-assembly process of spidroins is necessary for uncovering the mechanism of silk fiber formation. Nevertheless, how the terminal domains initiate self-assembly of soluble tubuliform spidroins to form solid eggcase silk is still not fully understood. Here we investigate the roles of both terminal domains of tubuliform spidroin 1 (TuSp1) in the silk fiber formation. We found that interactions among the terminal domains drive rapid TuSp1 self-assembly and fiber formation, which is insensitive to pH changes from 6.0 to 7.0. These interactions also contribute to the spidroin chain alignment in fiber formation upon shear-force exposure. Structural analysis and site-directed mutagenesis identified eight critical surface-exposed residues involved in hydrophobic interactions among terminal domains. Spidroins with single-point mutations of these residues fail to form intermediate micelle-like structures. The structural docking model indicates that multiple terminal domains of TuSp1 may interact with each other based on hydrophobic interactions and surface complementarity, which may lead to forming the surface of the micelle-like structure. Our results provide new insights into the structural mechanism of eggcase silk formation and the basis for designing and producing novel biomaterials derived from spider eggcase silk.


Asunto(s)
Fibroínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Secuencia de Aminoácidos , Modelos Moleculares , Dominios Proteicos
15.
Nucleic Acids Res ; 48(16): 9361-9371, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32710623

RESUMEN

Human Y-box binding protein 1 (YB-1) is a multifunctional protein and overexpressed in many types of cancer. It specifically recognizes DNA/RNA through a cold shock domain (CSD) and regulates nucleic acid metabolism. The C-terminal extension of CSD and the phosphorylation of S102 are indispensable for YB-1 function. Until now, the roles of the C-terminal extension and phosphorylation in gene transcription and translation are still largely unknown. Here, we solved the structure of human YB-1 CSD with a C-terminal extension sequence (CSDex). The structure reveals that the extension interacts with several residues in the conventional CSD and adopts a rigid structure instead of being disordered. Either deletion of this extension or phosphorylation of S102 destabilizes the protein and results in partial unfolding. Structural characterization of CSDex in complex with a ssDNA heptamer shows that all the seven nucleotides are involved in DNA-protein interactions and the C-terminal extension provides a unique DNA binding site. Our DNA-binding study indicates that CSDex can recognize more DNA sequences than previously thought and the phosphorylation reduces its binding to ssDNA dramatically. Our results suggest that gene transcription and translation can be regulated by changing the affinity of CSDex binding to DNA and RNA through phosphorylation, respectively.


Asunto(s)
Respuesta al Choque por Frío/genética , ADN/genética , ARN/genética , Proteína 1 de Unión a la Caja Y/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Humanos , Fosforilación/genética , Dominios Proteicos/genética , Proteínas de Unión al ARN/genética
17.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32586030

RESUMEN

Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen-deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.


Asunto(s)
Proteínas de Insectos/química , Multimerización de Proteína , Seda/química , Arañas/química , Secuencia de Aminoácidos , Animales , Concentración de Iones de Hidrógeno , Conformación Proteica , Dominios Proteicos , Homología de Secuencia
18.
Nat Commun ; 11(1): 2830, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503980

RESUMEN

The Spitzenkörper (SPK) constitutes a collection of secretory vesicles and polarity-related proteins intimately associated with polarized growth of fungal hyphae. Many SPK-localized proteins are known, but their assembly and dynamics remain poorly understood. Here, we identify protein-protein interaction cascades leading to assembly of two SPK scaffolds and recruitment of diverse effectors in Neurospora crassa. Both scaffolds are transported to the SPK by the myosin V motor (MYO-5), with the coiled-coil protein SPZ-1 acting as cargo adaptor. Neither scaffold appears to be required for accumulation of SPK secretory vesicles. One scaffold consists of Leashin-2 (LAH-2), which is required for SPK localization of the signalling kinase COT-1 and the glycolysis enzyme GPI-1. The other scaffold comprises a complex of Janus-1 (JNS-1) and the polarisome protein SPA-2. Via its Spa homology domain (SHD), SPA-2 recruits a calponin domain-containing F-actin effector (CCP-1). The SHD NMR structure reveals a conserved surface groove required for effector binding. Similarities between SPA-2/JNS-1 and the metazoan GIT/PIX complex identify foundational features of the cell polarity apparatus that predate the fungal-metazoan divergence.


Asunto(s)
Polaridad Celular , Proteínas Fúngicas/metabolismo , Miosina Tipo V/metabolismo , Neurospora crassa/metabolismo , Vesículas Secretoras/metabolismo , Proteínas Fúngicas/química , Hifa/citología , Hifa/metabolismo , Miosina Tipo V/química , Neurospora crassa/citología , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Mapas de Interacción de Proteínas
20.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209365

RESUMEN

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Medición de Riesgo/métodos , Torsades de Pointes/inducido químicamente , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Seguridad , Torsades de Pointes/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...