Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(4): e15195, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37089335

RESUMEN

Electrical impedance tomography (EIT) has been used by researchers across several areas because of its low-cost and no-radiation properties. Researchers use complex conductivity in bioimpedance experiments to evaluate changes in various indicators within the image target. The diverse volumes and edges of biological tissues and the large impedance range impose dedicated demands on hardware design. The EIT hardware with a high signal-to-noise ratio (SNR), fast scanning and suitable for the impedance range of the image target is a fundamental foundation that EIT research needs to be equipped with. Understanding the characteristics of this technique and state-of-the-art design will accelerate the development of the robust system and provide a guidance for the superior performance of next-generation EIT. This review explores the hardware strategies for EIT proposed in the literature.

2.
J Plant Physiol ; 261: 153418, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33887526

RESUMEN

Plant electrical signals, an early event in the plant-stimulus interaction, rapidly transmit information generated by the stimulus to other organs, and even the whole plant, to promote the corresponding response and trigger a regulatory cascade. In recent years, many promising state-of-the-art technologies applicable to study plant electrophysiology have emerged. Research focused on expression of genes associated with electrical signals has also proliferated. We propose that it is appropriate for plant electrical signals to be considered in the form of a "plant electrophysiological phenotype". This review synthesizes research on plant electrical signals from a novel, interdisciplinary perspective, which is needed to improve the efficient aggregation and use of plant electrical signal data and to expedite interpretation of plant electrical signals.


Asunto(s)
Genes de Plantas/fisiología , Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Fenómenos Electrofisiológicos
3.
Sensors (Basel) ; 16(12)2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999404

RESUMEN

Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes' electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit's output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R² values for the quadric regression equation of 0.7853 and 0.8496.


Asunto(s)
Electroquímica/métodos , Humedad , Semillas/química , Zea mays/química , Simulación por Computador , Conductividad Eléctrica , Electrodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA