Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1128699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124197

RESUMEN

Hesperetin is a natural flavonoid with many biological activities. In view of hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the underlying mechanisms, were explored. Hyperuricemia models induced by yeast extract (YE) or potassium oxonate (PO) in mice were created, as were models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) were reduced significantly after hesperetin treatment in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine oxidase activity markedly, altered the level of malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the XOD protein expression, toll-like receptor (TLR)4, nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-synthesis model in mice. Protein expression of organic anion transporter 1 (OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was upregulated by hesperetin intervention in a uric acid excretion model in mice. Our results proposal that hesperetin exerts a uric acid-lowering effect through inhibiting xanthine oxidase activity and protein expression, intervening in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins. Thus, hesperetin could be a promising therapeutic agent against hyperuricemia.

2.
Phytomedicine ; 114: 154798, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031639

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), peculiarly nonalcoholic steatohepatitis (NASH), has become the main cause of liver transplantation and liver-related death. However, the US Food and Drug Administration has not approved a specific medication for treating NASH. Neferine (NEF), a natural bisbenzylisoquinoline alkaloid separated from the traditional Chinese medicine Nelumbinis plumula, has a variety of pharmacological properties, especially on metabolic diseases. Nevertheless, the anti-NASH effect and mechanisms of NEF remain unclear. PURPOSE: This study aimed to investigate the amelioration of NEF on NASH and the potential mechanisms. STUDY DESIGN: HepG2 cells, hepatic stellate cells (HSCs) and high-fat diet (HFD)+carbon tetrachloride (CCl4) induced C57BL/6 mice were used to observe the effect of NEF against NASH and investigate the engaged mechanism. METHODS: HSCs and HepG2 cells stimulated by oleic acid (OA) were treated with NEF. C57BL/6 mice were fed with HFD+CCl4 to induce NASH mouse model and treated with or without NEF (5 mg/kg or 10 mg/kg, once daily, i.p) for 4 weeks. RESULTS: NEF significantly attenuated the accumulation of lipid droplets, intracellular triglyceride (TG) levels and hepatocytes apoptosis in OA-exposed HepG2 cells. NEF not only enhanced the AMPK and ACC phosphorylation in OA-stimulated HepG2 cells, but also reduced inflammatory response and fibrosis in lipopolysaccharide (LPS)-stimulated HepG2 and in LX-2, respectively. In HFD+CCl4-induced NASH mice, pathological staining confirmed NEF treatment mitigated hepatic lipid deposition, inflammatory cell infiltration as well as hepatic fibrosis. Furthermore, the liver weight, serum and hepatic TG and total cholesterol (TC) and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were decreased compared with the model group. HFD+CCl4 also induced the upregulation of specific proteins and genes associated to inflammation (ILs, TNF-α, NLRP3, ASC, CCL2 and CXCL10) and hepatic fibrosis (collagens, α-SMA, TGF-ß and TIPM1), which were also suppressed by NEF treatment. CONCLUSION: Our results demonstrated that NEF played a protective role in hepatic steatosis via the regulation of AMPK pathways, which may serve as an attractive candidate for a potential novel strategy on prevention and treatment of NASH.


Asunto(s)
Bencilisoquinolinas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Hígado , Bencilisoquinolinas/farmacología , Cirrosis Hepática/tratamiento farmacológico , Dieta Alta en Grasa
3.
Molecules ; 28(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677863

RESUMEN

Benign prostatic hyperplasia (BPH) is a chronic disease that affects the quality of life of older males. Sinomenine hydrochloride (SIN) is the major bioactive alkaloid isolated from the roots of the traditional Chinese medicinal plant Sinomenium acutum Rehderett Wilson. We wondered if the SIN administration exerted a regulatory effect on BPH and its potential mechanism of action. Mice with testosterone propionate-induced BPH subjected to bilateral orchiectomy were employed for in vivo experiments. A human BPH cell line (BPH-1) was employed for in vitro experiments. SIN administration inhibited the proliferation of BPH-1 cells (p < 0.05) by regulating the expression of androgen-related proteins (steroid 5-alpha reductase 2 (SRD5A2), androgen receptors, prostate-specific antigen), apoptosis-related proteins (B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax)) and proliferation-related proteins (proliferating cell nuclear antigen (PCNA), mammalian target of rapamycin, inducible nitric oxide synthase) in vitro. SIN administration decreased the prostate-gland weight coefficient (p < 0.05) and improved the histological status of mice suffering from BPH. The regulatory effects of SIN administration on SRD5A2, an apoptosis-related protein (Bcl-2), and proliferation-related proteins (PCNA, matrix metalloproteinase-2) were consistent with in vitro data. SIN exerted a therapeutic effect against BPH probably related to lowering the SRD5A2 level and regulating the balance between the proliferation and apoptosis of cells. Our results provide an important theoretical basis for the development of plant medicines for BPH therapy.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Apoptosis , Proliferación Celular , Colestenona 5 alfa-Reductasa/metabolismo , Metaloproteinasa 2 de la Matriz , Proteínas de la Membrana , Extractos Vegetales/farmacología , Antígeno Nuclear de Célula en Proliferación , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Calidad de Vida , Testosterona/farmacología
4.
Pharm Biol ; 60(1): 467-478, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35180021

RESUMEN

CONTEXT: Ferulic acid ethyl ester (FAEE) is abundant in Ligusticum chuanxiong Hort. (Apiaceae) and grains, and possesses diverse biological activities; but the effects of FAEE on osteoporosis has not been reported. OBJECTIVE: This study investigated whether FAEE can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating mitogen-activated protein kinase (MAPK). MATERIALS AND METHODS: We stimulated RAW 264.7 cells with receptor activator of NF-κB ligand (RANKL) followed by FAEE. The roles of FAEE in osteoclast production and osteogenic resorption of mature osteoclasts were evaluated by tartrate resistant acid phosphatase (TRAP) staining, expression of osteoclast-specific genes, proteins and MAPK. Ovariectomized (OVX) female Sprague-Dawley rats were administered FAEE (20 mg/kg/day) for 12 weeks to explore its potential in vivo, and then histology was undertaken in combination with cytokines analyses. RESULTS: FAEE suppressed RANKL-induced osteoclast formation (96 ± 0.88 vs. 15 ± 1.68) by suppressing the expression of osteoclast-specific genes, proteins and MAPK signalling pathway related proteins (p-ERK/ERK, p-JNK/JNK and p-P38/P38) in vitro. In addition, OVX rats exposed to FAEE maintained their normal calcium (Ca) (2.72 ± 0.02 vs. 2.63 ± 0.03, p < 0.05) balance, increased oestradiol levels (498.3 ± 9.43 vs. 398.7 ± 22.06, p < 0.05), simultaneously reduced levels of bone mineral density (BMD) (0.159 ± 0.0016 vs. 0.153 ± 0.0025, p < 0.05) and bone mineral content (BMC) (0.8 ± 0.0158 vs. 0.68 ± 0.0291, p < 0.01). DISCUSSION AND CONCLUSIONS: These findings suggested that FAEE could be used to ameliorate osteoporosis by the MAPK signalling pathway, suggesting that FAEE could be a potential therapeutic candidate for osteoporosis.


Asunto(s)
Ácidos Cafeicos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis Posmenopáusica/prevención & control , Animales , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ovariectomía , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley
5.
J Agric Food Chem ; 69(43): 12741-12752, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34672194

RESUMEN

Hyperuricemia is a metabolic disease caused by impaired uric acid (UA) metabolism. Ellagic acid (EA) is a natural small-molecule polyphenolic compound with known antioxidative and anti-inflammatory properties. Here, we evaluated the regulatory effects of EA on hyperuricemia and explored the underlying mechanisms. We found that EA is an effective xanthine oxidase (XOD) inhibitor (IC50 = 165.6 µmol/L) and superoxide anion scavenger (IC50 = 27.66 µmol/L). EA (5 and 10 µmol/L) treatment significantly and dose-dependently reduced UA levels in L-O2 cells; meanwhile, intraperitoneal EA administration (50 and 100 mg/kg) also significantly reduced serum XOD activity and UA levels in hyperuricemic mice and markedly improved their liver and kidney histopathology. EA treatment significantly reduced the degree of foot edema and inhibited the expression of NLPR3 pathway-related proteins in foot tissue of monosodium urate (MSU)-treated mice. The anti-inflammatory effect was also observed in lipopolysaccharide-stimulated RAW-264.7 cells. Furthermore, EA significantly inhibited the expressions of XOD and NLRP3 pathway-related proteins (TLR4, p-p65, caspase-1, TNF-α, and IL-18) in vitro and in vivo. Our results indicated that EA exerts ameliorative effects in experimental hyperuricemia and foot edema via regulating the NLRP3 signaling pathway and represents a promising therapeutic option for the management of hyperuricemia.


Asunto(s)
Hiperuricemia , Animales , Ácido Elágico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/genética , Inflamasomas , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Xantina Oxidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...