Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Neurobiol Dis ; 197: 106534, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759931

RESUMEN

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.

2.
Discov Oncol ; 15(1): 182, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782769

RESUMEN

BACKGROUND: The lncRNA growth arrest-specific 5 (GAS5) is involved in regulating breast cancer progression. In this study, we aimed to elucidate the function and mechanism of GAS5 in breast cancer. METHODS: The expressions of GAS5, fat mass and obesity-associated protein (FTO), insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), and Quaking (QKI) were assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. The m6A modification level of GAS5 was detected using m6A immunoprecipitation assay (MeRIP). The interaction between IGF2BP2 and GAS5 or QKI was detected using RNA immunoprecipitation assay (RIP) and dual luciferase reporter assay. Cell proliferation was measured using the Cell Counting Kit-8 (CCK-8) assay. The biological functions of the FTO/GAS5/IGF2BP2/QKI axis was assessed using the tumor xenograft assay. RESULTS: LncRNA GAS5 expression decreased in breast cancer and was regulated by FTO-mediated m6A modification in an IGF2BP2-dependent manner, resulting in decreased GAS5 stability and expression. GAS5 recruited IGF2BP2 to target QKI and upregulated QKI expression in breast cancer cells. GAS5 suppressed breast cancer growth via IGF2BP2/QKI, and this inhibitory effect was modulated by FTO both in vitro and in vivo. CONCLUSIONS: GAS5 regulated by FTO-mediated m6A modification represses the growth of breast cancer via the IGF2BP2/QKI pathway, suggesting that the FTO/GAS5/IGF2BP2/QKI pathway can be a potential target for breast cancer treatment.

3.
J Am Chem Soc ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753821

RESUMEN

Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.

4.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732590

RESUMEN

Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.


Asunto(s)
Envejecimiento , Longevidad , Nucleótidos , Humanos , Anciano , Femenino , Masculino , Envejecimiento/fisiología , Persona de Mediana Edad , Método Doble Ciego , Suplementos Dietéticos , Evaluación Geriátrica/métodos , Metilación de ADN/efectos de los fármacos , Telómero/efectos de los fármacos , Leucocitos
6.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611882

RESUMEN

This study evaluated the impact of pulsed electric fields (PEFs) combined with three-phase partitioning (TPP) extraction methods on the physicochemical properties, functional properties, and structural characterization of the soluble dietary fiber (SDF) derived from peanut shells (PS). The findings of this study indicated that the application of a PEF-TPP treatment leads to a notable improvement in both the extraction yield and purity of SDF. Consequently, the PEF-TPP treatment resulted in the formation of more intricate and permeable structures, a decrease in molecular weight, and an increase in thermal stability compared to SDFs without TPP treatment. An analysis revealed that the PEF-TPP method resulted in an increase in the levels of arabinose and galacturonic acid, leading to enhanced antioxidant capacities. Specifically, the IC50 values were lower in SDFs which underwent PEF-TPP (4.42 for DPPH and 5.07 mg/mL for ABTS) compared to those precipitated with 40% alcohol (5.54 mg/mL for DPPH, 5.56 mg/mL for ABTS) and PEF75 (6.60 mg/mL for DPPH, 7.61 mg/mL for ABTS), respectively. Notably, the SDFs which underwent PEF-TPP demonstrated the highest water- and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, glucose adsorption, pancreatic lipase inhibition, cholesterol adsorption, nitric ion adsorption capacity, and the least gelation concentration. Based on the synthesis scores obtained through PCA (0.536 > -0.030 > -0.33), which indicated that SDFs which underwent PEF-TPP exhibited the highest level of quality, the findings indicate that PEF-TPP exhibits potential and promise as a method for preparing SDFs.


Asunto(s)
Antioxidantes , Arachis , Benzotiazoles , Ácidos Sulfónicos , Adsorción , Fibras de la Dieta
7.
Clin Cardiol ; 47(4): e24269, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634453

RESUMEN

BACKGROUND: Cancer patients are increasingly affected by chemotherapy-related cardiac dysfunction. The reported incidence of this condition vary significantly across different studies. HYPOTHESIS: A better comprehensive understanding of chemotherapy-related cardiac dysfunction incidence in cancer patients is imperative. Therefore, we performed a meta-analysis to establish the overall incidence of chemotherapy-related cardiac dysfunction in cancer patients. METHODS: We searched articles in PubMed and EMBASE from database inception to May 1, 2023. Studies that reported the incidence of chemotherapy-related cardiac dysfunction in cancer patients were included. RESULTS: A total of 53 studies involving 35 651 individuals were finally included in the meta-analysis. The overall pooled incidence of chemotherapy-related cardiac dysfunction in cancer patients was 63.21 per 1000 person-years (95% CI: 57.28-69.14). The chemotherapy-related cardiac dysfunction incidence increased steeply within half a year of cancer chemotherapy. Also, the trend of chemotherapy-related cardiac dysfunction incidence appeared to have plateaued after a longer duration of follow-up. In addition, chemotherapy-related cardiac dysfunction incidence rates are significantly higher among patients with age ≥50 years versus patients with age <50 years (99.96 vs. 34.48 per 1000 person-years). The incidence rate of cardiac dysfunction was higher among breast cancer patients (72.97 per 1000 person-years), leukemia patients (65.21 per 1000 person-years), and lymphoma patients (55.43 per 1000 person-years). CONCLUSION: Our meta-analysis unveiled a definitive overall incidence rate of chemotherapy-related cardiac dysfunction in cancer patients. In addition, it was found that the risk of developing this condition escalates within the initial 6 months postchemotherapy, subsequently tapering off to become statistically insignificant after a duration of 6 years.


Asunto(s)
Neoplasias de la Mama , Cardiopatías , Humanos , Persona de Mediana Edad , Femenino , Incidencia
8.
Aging (Albany NY) ; 16(7): 6613-6626, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613804

RESUMEN

Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Ubiquitinación , Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
9.
Front Immunol ; 15: 1393801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660302

RESUMEN

Background: Human tumors pose significant challenges, with targeted therapy against specific molecular targets or signaling pathways being a mainstay alongside surgical resection. Previous studies have implicated KHDRBS1 in the oncogenesis of certain human tumors such as colorectal and prostate cancers, underscoring its potential as a therapeutic target. However, the comprehensive expression pattern of KHDRBS1 in hepatocellular carcinoma (HCC) warrants further exploration. Methods: Integrating and analyzing multi-omics, multi-cohort data from public databases, coupled with clinical samples and molecular biology validation, we elucidate the oncogenic role of KHDRBS1 in HCC progression. Additionally, leveraging HCC single-cell sequencing data, we segregate malignant cells into KHDRBS1-positive and negative subsets, uncovering significant differences in their expression profiles and functional roles. Results: Our study identifies KHDRBS1 as a tumor-promoting factor in HCC, with its positivity correlating with tumor progression. Furthermore, we highlight the clinical significance of KHDRBS1-positive malignant cells, aiming to further propel its clinical utility. Conclusion: KHDRBS1 plays a key role in HCC development. This study provides crucial insights for further investigation into KHDRBS1 as a therapeutic target in HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Masculino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Pronóstico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Microambiente Tumoral/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
10.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547405

RESUMEN

MOTIVATION: Protein sequence database search and multiple sequence alignment generation is a fundamental task in many bioinformatics analyses. As the data volume of sequences continues to grow rapidly, there is an increasing need for efficient and scalable multiple sequence query algorithms for super-large databases without expensive time and computational costs. RESULTS: We introduce Chorus, a novel protein sequence query system that leverages parallel model and heterogeneous computation architecture to enable users to query thousands of protein sequences concurrently against large protein databases on a desktop workstation. Chorus achieves over 100× speedup over BLASTP without sacrificing sensitivity. We demonstrate the utility of Chorus through a case study of analyzing a ∼1.5-TB large-scale metagenomic datasets for novel CRISPR-Cas protein discovery within 30 min. AVAILABILITY AND IMPLEMENTATION: Chorus is open-source and its code repository is available at https://github.com/Bio-Acc/Chorus.


Asunto(s)
Algoritmos , Programas Informáticos , Secuencia de Aminoácidos , Proteínas , Bases de Datos de Proteínas
11.
Sci Total Environ ; 926: 171629, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513862

RESUMEN

Changes in water yield are influenced by many intersecting biophysical elements, including climate, on-land best management practices, and landcover. Large-scale reductions in water yield may present a significant threat to water supplies globally. Many of these intersecting factors are intercorrelated and confounded, making it challenging to separate the factors' individual contributions to shaping local streamflow dynamics. Comprehensive hydrological models constructed based on a well-established understanding of biophysical processes are often employed to address these matters. However, these models rarely incorporate all relevant factors influencing local hydrological processes, due to the reliance of these models on the latest, albeit limited, state-of-the-art research. For instance, complexities inherent in watershed hydrology, which involve multilayered interactions among potentially many biophysical factors, leave the direct analysis of subtle impacts on water yields measured in-situ largely intractable. Therefore, we propose an innovative approach to assess impacts of elevated atmospheric CO2 concentrations and flow diversion terraces (FDTs) on stream discharge rates at the watershed scale. Initially, we use a comprehensive hydrological model to account for the impacts of major climatic and landuse/landcover factors on changes in field-acquired measurements of water yield. Next, we employ conventional and advanced statistical methods to decompose the residuals of model predictions to facilitate the identification of subtle influences promoted by increases in atmospheric CO2 concentrations and the application of FDTs in an agriculture-dominated watershed. Through this innovative approach, we find that FDTs contributed to a watershed-wide, net water-yield reduction of 188.0 mm (or 28.9 %) from 1992 to 2014. Ongoing increases in ambient CO2 concentrations, which are responsible for an overall reduction in a watershed-level assessment of stomatal conductance, have led to a minor increase in stream discharge rates during the same 23-year period, i.e., 0.45 mm of water yield per year, or 1.6 % overall. Streamflow reductions explicitly caused by regional warming in the area alone, on account of increased evapotranspiration, may be overestimated due to the opposing, synergistic effects on water yield associated with CO2-enrichment of the lower atmosphere and the annual application of FDTs.

12.
Compr Rev Food Sci Food Saf ; 23(2): e13311, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445543

RESUMEN

ß-Casein, an important protein found in bovine milk, has significant potential for application in the food, pharmaceutical, and other related industries. This review first introduces the composition, structure, and functional properties of ß-casein. It then reviews the techniques for isolating ß-casein. Chemical and enzymatic isolation methods result in inactivity of ß-casein and other components in the milk, and it is difficult to control the production conditions, limiting the utilization range of products. Physical technology not only achieves high product purity and activity but also effectively preserves the biological activity of the components. The isolated ß-casein needs to be utilized effectively and efficiently for various purity products in order to achieve optimal targeted application. Bovine ß-casein, which has a purity higher than or close to that of breast ß-casein, can be used in infant formulas. This is achieved by modifying its structure through dephosphorylation, resulting in a formula that closely mimics the composition of breast milk. Bovine ß-casein, which is lower in purity than breast ß-casein, can be maximized for the preparation of functional peptides and for use as natural carriers. The remaining byproducts can be utilized as food ingredients, emulsifiers, and carriers for encapsulating and delivering active substances. Thus, realizing the intensive processing and utilization of bovine ß-casein isolation. This review can promote the industrial production process of ß-casein, which is beneficial for the sustainable development of ß-casein as a food and material. It also provides valuable insights for the development of other active substances in milk.


Asunto(s)
Ingredientes Alimentarios , Leche , Humanos , Femenino , Lactante , Animales , Caseínas , Emulsionantes , Fórmulas Infantiles
13.
iScience ; 27(3): 109258, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433899

RESUMEN

Brain metastases (BM) of lung adenocarcinoma (LUAD) are the most common intracranial malignancy leading to death. However, the cellular origins and drivers of BM from LUAD have not been clarified. Cellular composition was characterized by single-cell sequencing analysis of primary lung adenocarcinoma (pLUAD), BM and lymph node metastasis (LNM) samples in GSE131907. Our study briefly analyzed the tumor microenvironment (TME), focusing on the role of epithelial cells (ECs) in BM. We have discovered a population of brain metastasis-associated epithelial cells (BMAECs) expressing SPP1, SAA1, and CDKN2A, and it has been observed that this population is mainly composed of aneuploid cells from pLUAD, playing a crucial role in brain metastasis. Our study concluded that both LNM and BM in LUAD originated from pLUAD lesions, but there is currently insufficient evidence to prove a direct association between BM lesions and LNM lesions, which provides inspiration for further investigation of the TME in BM.

14.
Heliyon ; 10(5): e27217, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449612

RESUMEN

Trilobolide-6-O-isobutyrate exhibits significant antitumor effects on cholangiocarcinoma (CCA) cells by effectively inhibiting the JAK/STAT3 signaling pathway. This study aims to investigate the mechanisms underlying the antitumor properties of trilobolide-6-O-isobutyrate, and to explore its potential as a therapeutic agent for CCA. This study illustrates that trilobolide-6-O-isobutyrate efficiently suppresses CCA cell proliferation in a dose- and time-dependent manner. Furthermore, trilobolide-6-O-isobutyrate stimulates the production of reactive oxygen species, leading to oxidative stress and initiation of apoptosis via the activation of the mitochondrial pathway. Data from xenograft tumor assays in nude mice confirms that TBB inhibits tumor growth, and that there are no obvious toxic effects or side effects in vivo. Mechanistically, trilobolide-6-O-isobutyrate exerts antitumor effects by inhibiting STAT3 transcriptional activation, reducing PCNA and Bcl-2 expression, and increasing P21 expression. These findings emphasizes the potential of trilobolide-6-O-isobutyrate as a promising therapeutic candidate for the treatment of CCA.

15.
Huan Jing Ke Xue ; 45(2): 1185-1195, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471955

RESUMEN

Microplastics are an emerging contaminant that can persist in the environment for extended periods, posing risks to ecological systems. Recently, microplastic pollution has emerged as a major global environmental problem. In order to ensure accurate and scientific evaluation of the ecological risks associated with microplastic pollution, it is of paramount importance to improve the simplicity and reliability of microplastic identification, systematically analyze the pollution characteristics of microplastics in various environmental media, and clarify their environmental impacts. Machine learning technology has gained widespread attention in microplastic research by learning and analyzing large volumes of data to establish result evaluation or prediction models. The use of machine learning can enhance the automation and identification efficiency of visual and spectral identification of microplastics, provide scientific support for tracing the sources of microplastic pollution, and help reveal the complex environmental effects of microplastics. This review provides a summary of the application characteristics and limitations of machine learning in the aforementioned areas by reviewing the progress made in research that employs machine learning technology in microplastic identification and environmental risk assessment. Furthermore, the findings of the review will provide suggestions and prospects for the development and application of machine learning in related areas.

16.
Biol Trace Elem Res ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502261

RESUMEN

Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1ß at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.

17.
Plant Commun ; 5(5): 100832, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38321741

RESUMEN

Members of the Malvaceae family, including Corchorus spp., Gossypium spp., Bombax spp., and Ceiba spp., are important sources of natural fibers. In the past decade, the genomes of several Malvaceae species have been assembled; however, the evolutionary history of Malvaceae species and the differences in their fiber development remain to be clarified. Here, we report the genome assembly and annotation of two natural fiber plants from the Malvaceae, Bombax ceiba and Ceiba pentandra, whose assembled genome sizes are 783.56 Mb and 1575.47 Mb, respectively. Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number (2n = 14 to 2n = 96) and genome size (234 Mb to 2676 Mb) among Malvaceae species. We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromosomes, providing new insights into the evolutionary trajectories of Malvaceae species. MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions in fiber cell-fate determination in the epidermis. It appears to perform this function in any tissue where it is expressed, i.e. in fibers on the endocarp of B. ceiba and in ovule fibers of cotton. We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of the finer, less spinnable, weaker fibers of B. ceiba. Our study provides two high-quality genomes of natural fiber plants and offers insights into the evolution of Malvaceae species and differences in their natural fiber formation and development through multi-omics analysis.


Asunto(s)
Genoma de Planta , Filogenia , Evolución Molecular
18.
Int J Biol Macromol ; 263(Pt 2): 130308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401578

RESUMEN

Starch-converting α-glucanotransferases are efficient enzymatic toolkits for the biosynthesis of diverse α-glucans, which hold vast application potential in the food industry. In this work, we identified a novel GtfB protein from Fructilactobacillus sanfranciscensis TMW11304 (FsTMW11304 GtfB) in NCBI. Although this enzyme was highly conserved in motifs I-IV with those isomalto-maltopolysaccharides (IMMPs)-producing GtfB α-glucanotransferases, it possessed distinct deletions and mutations in two crucial loops shaping the active site. Hence, unlike those GtfB enzymes, FsTMW11304 GtfB not only exhibited excellent 4,6-α-glucanotransferase activity on amylose to generate atypically low-molecular-weight IMMPs with consecutive linear (α1 â†’ 6) linkages up to 48 %, but also held good capability towards branched substrates. Besides, compared with the control, the treatment by FsTMW11304 GtfB reduced the storage/loss modulus of granular and gelatinized tapioca starches (TS) by 12.0 %/17.9 % and 91.4 %/82.9 %, respectively, indicating that the rigidity of the gel structure was attenuated to different degrees in the two reaction systems. Furthermore, the setback viscosity observed in the gelatinized TS modified by FsTMW11304 GtfB was only 5 % of that observed in the control group, suggesting the short-term anti-retrogradation property has been substantially improved. Thus, FsTMW11304 GtfB represents a meaningful addition to the α-glucanotransferases in GH70 family, which expands the repertoire of diverse α-glucans synthesized from starch and facilitates the understanding of the structure-function relationship of the GtfB α-glucanotransferases.


Asunto(s)
Lactobacillus , Manihot , Almidón , Almidón/metabolismo , Manihot/metabolismo , Viscosidad , Glucanos/química , Amilosa
19.
J Cancer Res Clin Oncol ; 150(2): 66, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300311

RESUMEN

OBJECTIVE: The tumor microenvironment (TME) in cholangiocarcinoma (CHOL) is typically characterized by a low level of immune infiltration, which accounts for the dismal prognosis of this patient population. This study sought to investigate the mechanisms underlying the reduced infiltration of immune cells into the CHOL TME. METHODS: We constructed a Least Absolute Shrinkage and Selection Operator (LASSO) regression model to identify prognosis-related differentially expressed genes (DEGs). The 'Corrplot' package was employed to analyze the correlation between dermatopontin (DPT) and immune infiltration in CHOL. The Tumor and Immune System Interaction Database (TISIDB) was used to evaluate the association between DPT and immunology. Single-cell analysis was conducted to localize CCL19 secretions. Western blot and qPCR were utilized to detect DPT expression, while immunofluorescence was performed to investigate the cellular localization of DPT. Additionally, ELISA analysis was employed to assess the alteration in CCL19 secretion in cancer-associated fibroblasts (CAFs) and macrophages. RESULTS: Our findings revealed that CHOL patients with low DPT expression had a poorer prognosis. Enrichment analysis demonstrated a positive correlation between DPT levels and the infiltration of immunomodulators and immune cells. Moreover, high DPT levels were associated with enhanced anti-PD-1/PD-L1 immunotherapeutic responses. Furthermore, DPT expression impacted the landscape of gene mutations, showing a negative association with tumor grade, stage, and lymph node metastasis. Based on the results of protein peptides analysis and cell experiments, it was inferred that the downregulation of DPT in CHOL cells effectively suppressed the secretion of CCL19 in macrophages. CONCLUSIONS: DPT is a novel prognosis-related biomarker for CHOL patients, and this study provides preliminary insights into the mechanism by which DPT promotes the infiltration of immune cells into the CHOL TME.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Conductos Biliares Intrahepáticos , Quimiocina CCL19 , Colangiocarcinoma/genética , Regulación hacia Abajo , Macrófagos , Microambiente Tumoral
20.
Eur J Phys Rehabil Med ; 60(2): 361-372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345568

RESUMEN

INTRODUCTION: Exercise-based cardiac rehabilitation (CR) plays a critical role in coronary heart disease (CHD) management. There is a heritage in the effect of exercise-based CR with different exercise programs or intervention settings. This study developed an evidence matrix that systematically assesses, organizes, and presents the available evidence regarding exercise-based CR in CHD management. EVIDENCE ACQUISITION: A comprehensive literature search was conducted across six databases. Two reviewers screened the identified literature, extracted relevant data, and assessed the quality of the studies. An evidence-mapping framework was established to present the findings in a structured manner. Bubble charts were used to represent the included systematic reviews (SRs). The charts incorporated information, exercise prescriptions, outcome indicators, associated P values, research quality, and the number of original studies. A descriptive analysis summarized the types of CR, intervention settings, influential factors, and adverse events. EVIDENCE SYNTHESIS: Sixty-two SRs were included in this analysis, focusing on six exercise types in addition to assessing major adverse cardiovascular events (MACE), cost and rehabilitation outcomes. The most commonly studied exercise types were unspecified (28 studies, 45.2%) and aerobic (11 studies, 17.7%) exercises. All-cause mortality was the most frequently reported MACE outcome (22 studies). Rehabilitation outcomes primarily centered around changes in cardiac function (135 outcomes from 39 SRs). Only 8 (12.9%) studies were rated as "high quality." No significant adverse events were observed in the intervention group. Despite some variations among the included studies, most SRs demonstrated the benefits of exercise in improving one or more MACE or rehabilitation outcomes among CHD patients. CONCLUSIONS: The proportion of high-quality evidence remains relatively low. Limited evidence is available regarding the effectiveness of specific exercise types and specific populations, necessitating further evaluation.


Asunto(s)
Rehabilitación Cardiaca , Enfermedad Coronaria , Infarto del Miocardio , Humanos , Calidad de Vida , Enfermedad Coronaria/etiología , Enfermedad Coronaria/rehabilitación , Terapia por Ejercicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...