Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 54027-54038, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37938033

RESUMEN

Modern highly integrated microelectronic devices are unable to dissipate heat over time, which greatly affects the operating efficiency and service life of electronic equipment. Constructing high-thermal-conductivity composites with 3D network structures is a hot research topic. In this article, carbon fiber felt (CFF) was prepared by airflow netting forming technology and needle punching combined with stepped heat treatment. Then, carbon-coated carbon fiber felt (C@CFF) with a three-dimensional network structure was constructed in situ by high-temperature chemical vapor deposition (CVD). Finally, high-temperature treatment was used to improve the degree of crystallinity of C@CFF and further enhance its graphitization. The epoxy (EP) composites were prepared by simple vacuum infiltration-molding curing. The test results showed that the in-plane thermal conductivity (K∥) and through-plane thermal conductivity (K⊥) of EP/C@CFF-2300 °C could reach up to 13.08 and 2.78 W/mK, respectively, where the deposited carbon content was 11.76 vol %. The in-plane thermal conductivity enhancement (TCE) of EP/C@CFF-2300 °C was improved by 6440 and 808% compared to those of pure EP and EP/CFF, respectively. The high-temperature treatment greatly provides an improvement in thermal conductivity for the in-plane and the through-plane. Infrared imaging showed excellent thermal management properties of the prepared epoxy composites. EP/C@CFF-2300 °C owned an in-plane AC conductivity of up to 0.035 S/cm at 10 kHz, and Lorentz-Drude-type negative permittivity behaviors were observed at the tested frequency region. The CFF thermally conductive composites prepared by the above method have a broad application prospect in the field of advanced thermal management and electromagnetics.

2.
Mater Horiz ; 10(7): 2476-2486, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37039502

RESUMEN

High-energy density polymer dielectrics play a crucial role in various pulsed energy storage and conversion systems. So far, many strategies have been demonstrated to be able to effectively improve the energy density of polymer dielectrics, but sophisticated fabrication processes are usually needed which result in high cost and poor repeatability. Herein, an easy-operated sputtering and hot-pressing process is developed to significantly enhance the energy density of polymer dielectrics. Surprisingly, for the poly(vinylidene fluoride-hexafluoropropylene) films sputtered with merely 0.0064 vol% gold nanoparticles, the energy density is remarkably improved by 84.3% because of the concurrent enhancements in breakdown strength (by 37.5%) and dielectric permittivity (by 25.5%), which is demonstrated to have originated from the unique Coulomb blockade and micro-capacitor effect of the gold nanoparticles. It is further confirmed that this design strategy is also applicable for commercial biaxially oriented polypropylene and poly(methyl methacrylate). This work offers a novel, easy-operated and universally applicable route to improve the energy density of polymeric dielectrics, which paves the way for their application in modern electronics and power modules.

3.
ACS Appl Mater Interfaces ; 15(13): 17103-17112, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36952632

RESUMEN

Polymers with excellent dielectric properties are strongly desired for pulsed power film capacitors. However, the adverse coupling between the dielectric constant and breakdown strength greatly limits the energy storage capability of polymers. In this work, we report an easily operated method to solve this problem via sputtering the interface of bilayer polymer films with ultralow content of gold nanoparticles. Interestingly, the gold nanoparticles can effectively block the movement of charge carriers because of the Coulomb blocking effect, yielding significantly enhanced breakdown strength. Meanwhile, the gold nanoparticles can act as electrodes to form numerous equivalent microcapacitors, resulting in an obviously enhanced dielectric constant. Impressively, the polymer film with merely 0.01 vol % gold nanoparticles exhibits an obvious dielectric constant and breakdown strength, which are 129 and 131% that of the pristine polymer film, respectively. Consequently, a high energy density which is 176% of that of the pristine polymer film is achieved, and a high efficiency of 79.2% is maintained. Moreover, this process can be well combined with the production process of commercial dielectric polymer films, which is beneficial for mass production. This work offers an easily operated way to improve the dielectric capacitive energy storage properties of polymers, which could also be applicable to other materials, such as ceramics and composites.

4.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231915

RESUMEN

With the increasing popularity of wearable devices, flexible electronics with a negative permittivity property have been widely applied to wearable devices, sensors, and energy storage. In particular, a low-frequency dispersion negative permittivity in a wide frequency range can effectively contribute to the stable working performance of devices. In this work, polyvinylidene fluoride (PVDF) was selected as the flexible matrix, and copper nanowires (CuNWs) were used as the conductive functional filler to prepare a flexible CuNWs/PVDF composite film with a low-frequency dispersion negative permittivity. As the content of CuNWs increased, the conductivity of the resulting composites increased sharply and presented a metal-like behavior. Moreover, the negative permittivity consistent with the Drude model was observed when CuNWs formed a percolative network. Meanwhile, the negative permittivity exhibited a low-frequency dispersion in the whole test frequency range, and the fluctuation of the permittivity spectra was relatively small (-760 to -584) at 20 kHz-1 MHz. The results revealed that the high electron mobility of CuNWs is reasonable for the low-frequency dispersion of negative permittivity. CuNWs/PVDF composite films with a frequency-independent negative permittivity provide a new idea for the development of flexible wearable electronic devices.

5.
ACS Appl Mater Interfaces ; 14(25): 29292-29301, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35726718

RESUMEN

Polymer dielectrics have drawn tremendous attention worldwide due to their huge potential for pulsed power capacitors. Recent studies have demonstrated that linear/nonlinear layered composites, which can effectively balance energy density and efficiency, have huge potential for capacitive energy storage applications. However, further enhanced energy densities are strongly desired to meet the everincreasing demand for the miniaturization of electronic devices. Herein, a novel class of core-shell structured graphene@titanium dioxide nanoboxes is successfully synthesized and introduced into poly(vinylidene fluoride-hexafluoropropylene)-poly(ether imide) double-layer films. It is exciting to find that the introduction of merely 0.5 wt % nanoboxes results in a substantially enhanced energy density of 19.39 J/cm3, which is over 2.6 times that of the film without nanoboxes (7.44 J/cm3). Meanwhile, a high breakdown strength of 655 kV/mm and a high efficiency of 83% are achieved. Furthermore, the nanocomposites also show excellent power densities and cycling stabilities. These composites with excellent comprehensive energy storage performances have huge potential for advanced pulsed power capacitors.

6.
ACS Appl Mater Interfaces ; 13(23): 27522-27532, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34080845

RESUMEN

Dielectric polymer capacitors are extensively applied in advanced electronics by virtue of their extremely high power density. However, it remains a challenge to concurrently realize high energy density and high discharge efficiency. In order to solve this conundrum, we herein design a novel all-polymer trilayer structure, where the paraelectric poly(methyl methacrylate) (PMMA) is used as the top layer to obtain a high discharge efficiency, and ferroelectric P(VDF-HFP) is employed as the bottom layer to obtain a high energy density. Particularly, the PMMA/poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) blend composite is used as the middle layer to homogenize the electric field inside the trilayer composites, turning out an obviously boosted breakdown strength and elevated energy density. Consequently, an efficiency as high as 85% and an energy density up to 7.5 J/cm3 along with excellent cycling stability are simultaneously realized at an ultrahigh electric field of 490 kV/mm. These attractive characteristics of the all-polymer trilayer structure suggest that the feasible pathway presented herein is significant to realize concurrently a high energy density and discharge efficiency.

7.
Phys Chem Chem Phys ; 22(9): 5114-5122, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32073008

RESUMEN

Recently, flexible metacomposites with negative permittivity have triggered extensive interest owing largely to their promising applications in areas such as sensors, cloaking, and wearable and flexible electronic devices. In this paper, flexible silver nanowire/carbon fiber felt (AgNW/CFF) metacomposites with weakly negative permittivity were fabricated by adjusting their composition and microstructure. Along with the formation of a conductive AgNW network, the resulting composites gradually presented metal-like behavior. Interestingly, weakly negative permittivity with a small absolute value (as low as about 6.4) and good flexibility were observed in the composites with 3.7 wt% AgNWs. The one-dimensional silver nanowires contribute to reducing the overall electron density of the resulting composites, which is responsible for the weakly negative permittivity. As the AgNWs increased, the Drude-like negative permittivity got stronger owing to the enhancement of the electron density. Further investigation from the perspective of microelectronics revealed that the negative permittivity is dependent on the inductive characteristic. The proposed design strategy for AgNW/CFF composites with tunable negative permittivity opens up a new approach to flexible metacomposites.

8.
Research (Wash D C) ; 2019: 1021368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31549041

RESUMEN

The mechanism of negative permittivity/permeability is still unclear in the random metamaterials, where the precise control of microstructure and electromagnetic properties is also a challenge due to its random characteristic. Here silver was introduced into porous SiO2 microsphere matrix by a self-assemble and template method to construct the random metamaterials. The distribution of silver was restricted among the interstices of SiO2 microspheres, which lead to the precise regulation of electrical percolation (from hoping to Drude-type conductivity) with increasing silver content. Negative permittivity came from the plasma-like behavior of silver network, and its value and frequency dispersion were further adjusted by Lorentz-type dielectric response. During this process, the frequency of epsilon-near-zero (ENZ) could be adjusted accordingly. Negative permeability was well explained by the magnetic response of eddy current in silver micronetwork. The calculation results indicated that negative permeability has a linear relation with ω 0.5, showing a relaxation-type spectrum, different from the "magnetic plasma" of periodic metamaterials. Electromagnetic simulations demonstrated that negative permittivity materials and ENZ materials, with the advantage of enhanced absorption (40dB) and intelligent frequency selection even in a thin thickness (0.1 mm), could have potentials for electromagnetic attenuation and shielding. This work provides a clear physical image for the theoretical explanation of negative permittivity and negative permeability in random metamaterials, as well as a novel strategy to precisely control the microstructure of random metamaterials.

9.
RSC Adv ; 9(71): 41817-41823, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35541617

RESUMEN

High-performance microwave absorbing materials require optimized impedance matching and high attenuation ability. Here we meet the challenge by incorporating electric loss with magnetic loss materials to prepare carbon-based/magnetic hybrids. The reduced graphene oxide (rGO)/La0.7Sr0.3MnO3 (LSMO) composites were prepared by dispersing the LSMO powders into 4.25, 6.25, 8.16, and 10 wt% of the graphene oxide aqueous solution, then the rGO/LSMO composites were formed by hydrothermal method. The pure rGO, LSMO, and rGO/LSMO composites were studied using X-ray diffraction and SEM. Microwave absorption properties were investigated by using coin method. Simulation studies show that 6.25 wt% of rGO/LSMO in a wax matrix exhibits the strongest reflection loss of -47.9 dB @ 10.7 GHz at a thickness of 2.5 mm. Moreover, the effective absorption bandwidth with the reflection loss below -10 dB is up to 14.5 GHz, ranged from 3.5 to 18 GHz for the composites with a thickness of 1.5-5.5 mm, due to a synergism between dielectric loss of rGO and magnetic loss of magnetic LSMO, which is an interesting exploration in the applications of rGO and LSMO. This method can be extended to design and fabricate hybrid absorbers with effective microwave absorption.

10.
ACS Appl Mater Interfaces ; 10(41): 35154-35163, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30277387

RESUMEN

Solar vapor generation has attracted tremendous attention as one of the most efficient ways of utilizing solar energy. It is highly desirable to develop low-cost, eco-friendly, and high-efficiency solar absorbers for practical applications of solar vapor generation. Herein, a three-dimensional plasmonic covellite CuS hierarchical nanostructure has been synthesized as the light-absorbing material via a facile one-pot hydrothermal method for structurally integrated solar absorbers with microporous poly(vinylidene fluoride) membrane (PVDFM) as the supporting material. A broadband and highly efficient light absorption has been achieved in the wavelength of 300-2500 nm, along with high water evaporation efficiencies of 90.4 ± 1.1 and 93.3 ± 2.0% under 1 and 4 sun irradiation, respectively. Meanwhile, stable performance has been demonstrated for over 20 consecutive runs without much performance degradation. To the best of our knowledge, this is the highest performance among the copper sulfide-based solar absorbers. With the additional features of low-cost and convenient fabrication, this plasmonic solar absorber exhibits a tremendous potential for practical solar vapor generation.

11.
ACS Appl Mater Interfaces ; 10(31): 26713-26722, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30004213

RESUMEN

Intrinsic metamaterials with negative- k that originated from random-structured materials have drawn increasing attention. Currently, intrinsic negative- k was mainly achieved in percolative composites by tailoring the compositions and microstructures. Herein, plasmalike negative- k was successfully achieved in multiwalled carbon nanotubes (MWCNT)/polyimide (PI) nanocomposites via applying external dc bias which exhibited excellent capability in conveniently and accurately adjusting negative- k. Mechanism analysis indicated that the localized charges at the interfaces between MWCNT and PI became delocalized after gaining energy from the dc bias, resulting in elevated concentration of delocalized charges, and hence the enhanced negative- k. Furthermore, it is surprising to observe that negative- k also appeared in multilayer nanocomposites consisting of alternating BaTiO3/PI and PI layers, in which there was no percolative conducting network. On the basis of systematic analysis, it is proposed that the unique nonpercolative negative- k resulted from the mutual competition between plasma oscillations of delocalized charges and polarizations of localized charges. Negative- k appeared once the polarizations were overwhelmed by plasma oscillations. This work demonstrated that applying dc bias is a promising way to achieve highly tailorable negative- k. Meanwhile, the observation of unique nonpercolative negative- k and the clarification of underlying mechanisms offer new insights into negative- k metamaterials, which will greatly facilitate the exploration of high-performance electromagnetic metamaterials.

12.
ACS Nano ; 12(7): 7380-7387, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29927234

RESUMEN

As a potential alternative to lithium-ion batteries, sodium-ion batteries (SIBs) have attracted more and more attention due to the lower cost of sodium than lithium. Red phosphorus (RP) is an especially promising anode for SIBs with the highest theoretical capacity of 2596 mAh g-1, which faces the challenges of large volume change and low conductivity. Herein, we develop a nanoporous RP on reduced graphene oxide (NPRP@RGO) as a high-performance anode for SIBs through boiling. Its nanoporous structure could accommodate the volume change and minimize the ion diffusion length, and the high electronic conductive network built on RGO sheets facilitates the fast electron and ion transportation. As a result, NPRP@RGO exhibits a superhigh capacity (1249.7 mAh gcomposite-1 after 150 cycles at 173.26 mA gcomposite-1), superior rate capability (656.9 mAh gcomposite-1 at 3465.28 mA gcomposite-1), and ultralong cycle life at 5.12 A gRP-1 for RP-based electrodes (775.3 mAh gRP-1 after 1500 cycles). The successful synthesis of NPRP@RGO marks a significant enhanced performance for RP-based SIB anodes, providing a scalable synthesis route for nanoporous structures.

13.
J Phys Condens Matter ; 29(36): 365703, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28643693

RESUMEN

Recently, negative parameters such as negative permittivity and negative permeability have been attracting extensive attention for their unique electromagnetic properties. Usually, negative permittivity is well achieved by plasma oscillation of free electrons in conductor-insulator composites or metamaterials, while some attention has been paid to attaining negative permittivity in ceramics to reduce dielectric loss. In this paper, negative permittivity in barium titanate and yttrium iron garnet composites are reported which was well fitted by the Lorentz model. Further, negative permittivity behavior was verified via Kramers-Kronig relations, and it revealed that the causal principle still valid for negative permittivity resulted from dielectric resonance. The interrelationships among negative permittivity, capacitive-inductive transition and ac conductivity are discussed.

14.
Nanoscale ; 9(18): 5779-5787, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28440825

RESUMEN

While metal is the most common conductive constituent element in the preparation of metamaterials, one-dimensional conductive carbon nanotubes (CNTs) provide alternative building blocks. Here alumina (Al2O3) nanocomposites with multi-walled carbon nanotubes (MWCNTs) uniformly dispersed in the alumina matrix were prepared by hot-pressing sintering. As the MWCNT content increased, the formed conductive MWCNT networks led to the occurrence of the percolation phenomenon and a change of the conductive mechanism. Two different types of negative permittivity (i.e., resonance-induced and plasma-like) were observed in the composites. The resonance-induced negative permittivity behavior in the composite with a low nanotube content was ascribed to the induced electric dipole generated from the isolated MWCNTs. The frequency dispersions of such negative permittivity can be fitted well by the Lorentz model, while the observed plasma-like negative permittivity behavior in the composites with MWCNT content exceeding the percolation threshold could be well explained by the low frequency plasmonic state generated from conductive nanotube networks using the Drude model. This work is favorable to revealing the generation mechanism of negative permittivity behavior and will greatly facilitate the practical applications of metamaterials.

15.
ACS Appl Mater Interfaces ; 5(19): 9470-7, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24007324

RESUMEN

Fe-Mn-O composite oxides with various Fe/Mn molar ratios were prepared by a simple coprecipitation method followed by calcining at 600 °C, and carbon-coated oxides were obtained by pyrolyzing pyrrole at 550 °C. The cycling and rate performance of the oxides as anode materials are greatly associated with the Fe/Mn molar ratio. The carbon-coated oxides with a molar ratio of 2:1 exhibit a stable reversible capacity of 651.8 mA h g(-1) at a current density of 100 mA g(-1) after 90 cycles, and the capacities of 567.7, 501.3, 390.7, and 203.8 mA h g(-1) at varied densities of 200, 400, 800, and 1600 mA g(-1), respectively. The electrochemical performance is superior to that of single Fe3O4 or MnO prepared under the same conditions. The enhanced performance could be ascribed to the smaller particle size of Fe-Mn-O than the individuals, the mutual segregation of heterogeneous oxides of Fe3O4 and MnO during delithiation, and heterogeneous elements of Fe and Mn during lithiation.

16.
ACS Appl Mater Interfaces ; 5(10): 4209-15, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23627302

RESUMEN

FeWO4 (FWO) nanocrystals were prepared at 180 °C by a simple hydrothermal method, and carbon-coated FWO (FWO/C) was obtained at 550 °C using pyrrole as a carbon source. The FWO/C obtained from the product hydrothermally treated for 5 h exhibits reversible capacities of 771.6, 743.8, 670.6, 532.6, 342.2, and 184.0 mAh g(-1) at the current densities of 100, 200, 400, 800, 1600, and 3200 mA g(-1), respectively, whereas that from the product treated for 0.5 h achieves a reversible capacity of 205.9 mAh g(-1) after cycling 200 times at a current density of 800 mA g(-1). The excellent electrochemical performance of the FWO/C results from the combination of the nanocrystals with good electron transport performance and the nitrogen-doped carbon coating.

17.
Adv Mater ; 24(17): 2349-52, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22499287

RESUMEN

Random composites with nickel networks hosted randomly in porous alumina are proposed to realize double negative materials. The random composite for DNMs (RC-DNMs) can be prepared by typical processing of material, which makes it possible to explore new DNMs and potential applications, and to feasibly tune their electromagnetic parameters by controlling their composition and microstructure. Hopefully, various new RC-DNMs with improved performance will be proposed in the future.


Asunto(s)
Óxido de Aluminio/química , Níquel/química , Campos Magnéticos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...