Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Biochem Funct ; 42(3): e3999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571320

RESUMEN

Intratumoral microbiota (ITM) are microorganisms present in tumor cells. ITM participate in tumor development by affecting tumor cells directly and the tumor microenvironment (TME), indirectly. Alterations in ITM instigate changes in tumor DNA, activate oncogenic pathways, induce tumor inflammatory responses, disrupt normal immune activity, and facilitate the secretion of effectors leading to tumor progression, metastasis, or diminished therapeutic effects. ITM varies significantly in different types of cancer cells and disease states. The presence of certain ITM serves as a predictor of various disease states. Thus, ITM predicts tumorigenesis, tumor grade, treatment efficacy, and prognosis, making it a potential tumor biomarker. The present study aimed to determine the mechanisms by which ITM affects tumor development, especially through the TME; highlight the significant potential of ITM in enhancing tumor diagnosis and prognosis; and outline future directions for ITM research, with a focus on the development of innovative tumor markers.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Carcinogénesis , Microambiente Tumoral
2.
Cell Commun Signal ; 22(1): 232, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637851

RESUMEN

Metastasis poses a major challenge in colorectal cancer (CRC) treatment and remains a primary cause of mortality among patients with CRC. Recent investigations have elucidated the involvement of disrupted gut microbiota homeostasis in various facets of CRC metastasis, exerting a pivotal influence in shaping the metastatic microenvironment, triggering epithelial-mesenchymal transition (EMT), and so on. Moreover, therapeutic interventions targeting the gut microbiota demonstrate promise in enhancing the efficacy of conventional treatments for metastatic CRC (mCRC), presenting novel avenues for mCRC clinical management. Grounded in the "seed and soil" hypothesis, this review consolidates insights into the mechanisms by which imbalanced gut microbiota promotes mCRC and highlights recent strides in leveraging gut microbiota modulation for the clinical prevention and treatment of mCRC. Emphasis is placed on the considerable potential of manipulating gut microbiota within clinical settings for managing mCRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales/patología , Microambiente Tumoral
4.
Asian J Psychiatr ; 94: 103960, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368692

RESUMEN

OBJECTIVES: To evaluate the efficacy and safety of combined deep brain stimulation (DBS) with capsulotomy for comorbid motor and psychiatric symptoms in patients with Tourette's syndrome (TS). METHODS: This retrospective cohort study consecutively enrolled TS patients with comorbid motor and psychiatric symptoms who were treated with combined DBS and anterior capsulotomy at our center. Longitudinal motor, psychiatric, and cognitive outcomes and quality of life were assessed. In addition, a systematic review and meta-analysis were performed to summarize the current experience with the available evidence. RESULTS: In total, 5 eligible patients in our cohort and 26 summarized patients in 6 cohorts were included. After a mean 18-month follow-up, our cohort reported that motor symptoms significantly improved by 62.4 % (P = 0.005); psychiatric symptoms of obsessive-compulsive disorder (OCD) and anxiety significantly improved by 87.7 % (P < 0.001) and 78.4 % (P = 0.009); quality of life significantly improved by 61.9 % (P = 0.011); and no significant difference was found in cognitive function (all P > 0.05). Combined surgery resulted in greater improvements in psychiatric outcomes and quality of life than DBS alone. The synthesized findings suggested significant improvements in tics (MD: 57.92, 95 % CI: 41.28-74.56, P < 0.001), OCD (MD: 21.91, 95 % CI: 18.67-25.15, P < 0.001), depression (MD: 18.32, 95 % CI: 13.26-23.38, P < 0.001), anxiety (MD: 13.83, 95 % CI: 11.90-15.76, P < 0.001), and quality of life (MD: 48.22, 95 % CI: 43.68-52.77, P < 0.001). Individual analysis revealed that the pooled treatment effects on motor symptoms, psychiatric symptoms, and quality of life were 78.6 %, 84.5-87.9 %, and 83.0 %, respectively. The overall pooled rate of adverse events was 50.0 %, and all of these adverse events were resolved or alleviated with favorable outcomes. CONCLUSIONS: Combined DBS with capsulotomy is effective for relieving motor and psychiatric symptoms in TS patients, and its safety is acceptable. However, the optimal candidate should be considered, and additional experience is still necessary.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Síndrome de Tourette , Humanos , Síndrome de Tourette/complicaciones , Síndrome de Tourette/cirugía , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Estudios Retrospectivos , Trastorno Obsesivo Compulsivo/complicaciones , Trastorno Obsesivo Compulsivo/terapia , Trastorno Obsesivo Compulsivo/diagnóstico
5.
ACS Appl Mater Interfaces ; 16(5): 5735-5744, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38271590

RESUMEN

Efficiently upgrading 5-hydroxymethylfurfural (HMF) into high-value-added products, such as 2,5-diformylfuran (DFF) and 2,5-furan dicarboxylic acid (FDCA), through a photocatalytic process by using solar energy has been incessantly pursued worldwide. Herein, a series of transition-metal (TM = Ni, Fe, Co, Cu) single atoms were supported on Ti4+αTi3+1-αO2-δ nanofibers (NFs) with certain defects (Ov), denoted as TM SAC-Ti4+αTi3+1-αO2-δ NFs (TM = Ni, Fe, Co, Cu), aiming to enhance the photocatalytic conversion of HMF. A super HMF conversion rate of 57% and a total yield of 1718.66 µmol g-1 h-1 (DFF and FDCA) surpassing that of the Ti4+αTi3+1-αO2-δ NFs by 1.6 and 2.1 times, respectively, are realized when TM is Co (Co SAC-Ti4+αTi3+1-αO2-δ NFs). Experiments combined with density functional theory calculation (DFT) demonstrate that the TM single atoms occupy the Ti site of Ti4+αTi3+1-αO2-δ NFs, which plays a dominant role in the photo-oxidation of HMF. Raman, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) characterizations confirm the strong electron local exchange interaction in TM SAC-Ti4+αTi3+1-αO2-δ NFs and demonstrate the substitution of Ti by the TM SACs. The projected density of states and charge density difference reveal that the strong interaction between metal-3d and O-2p orbitals forms Ti-O-TM bonds. The bonds are identified as the adsorption site, where TM single atoms on the surface of Ti4+αTi3+1-αO2-δ NFs reduce HMF molecule adsorption energy (Eads). Furthermore, the TM single atom modulates the electronic structure of TM SAC-Ti4+αTi3+1-αO2-δ NFs through electron transfer, leading to narrow band gaps of the photocatalysts and enhancing their photocatalytic performance. This study has uncovered a newer strategy for enhancing the photocatalytic attributes of semiconducting materials.

6.
J Colloid Interface Sci ; 660: 800-809, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277837

RESUMEN

Electrocatalytic hydrogenation (ECH) reduction provides an environment-friendly alternative to conventional method for the upgrade of furfural to furfuryl alcohol. At present, exploring superior catalysts with high activity and selectivity, figuring out the reduction mechanism in aqueous alkaline environment are urgent. In this work, zinc cobalt bimetallic oxide (ZnMn2O4) with surface-derived Zn2+ vacancies supported by carbon nanofibers (d-ZnMn2O4-C) was fabricated. The d-ZnMn2O4-C exhibited excellent performance in electrocatalytic reduction of furfural, high furfuryl alcohol yield (49461.1 ± 228 µmol g-1) and Faradaic efficiency (95.5 ± 0.5 %) was obtained. In-depth research suggested that carbon nanofiber may strongly promoted the production of adsorbed hydrogen (Hads), and Zn2+ vacancies may significantly lowered the energy barrier of furfural reduction to furfuryl alcohol, the synergistic effect between carbon nanofiber and d-ZnMn2O4 probably facilitated the reaction between Hads and furfuryl alcohol radical, thereby promoting the formation of furfuryl alcohol. Furthermore, the reaction mechanism was clarified by inhibitor coating and isotope experiments, the results of which revealed that the conversion of furfural to furfuryl alcohol on d-ZnMn2O4-C followed both ECH and direct electroreduction mechanism.

7.
J Cancer Res Clin Oncol ; 149(14): 13477-13494, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491636

RESUMEN

Cancer immunotherapy has emerged as a groundbreaking method of treating malignancies. However, cancer immunotherapy can only benefit a small percentage of patients, and the numerous side effects that might develop during treatment reduce its effectiveness or even put patients' lives in jeopardy. Surprisingly, the gut microbiome Akkermansia muciniphila (A. muciniphila) can significantly inhibit carcinogenesis and improve anti-tumor effects, thus increasing the effectiveness of cancer immunotherapy and decreasing the likelihood of side effects. In this review, we focus on the effects of A. muciniphila on the human immune system and the positive impacts of A. muciniphila on cancer immunotherapy, which can build on strengths and improve weaknesses of cancer immunotherapy. The potential clinical applications of A. muciniphila on cancer immunotherapy are also proposed, which have great prospects for anti-tumor therapy.

8.
J Hazard Mater ; 457: 131743, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37270957

RESUMEN

Microplastic pollution has emerged as a pressing environmental issue of global concern due to its detrimental effects on the environment and ecology. Restricted to their characters of complex composition, it is a great challenge to propose a more cost-effective approach to achieve highly selective conversion of microplastic into add-value products. Here we demonstrate an upcycling strategy for converting PET microplastics into added-value chemicals (formate, terephthalic acid and K2SO4). PET is initially hydrolyzed in KOH solution to produce terephthalic acid and ethylene glycol, which is subsequently used as an electrolyte to produce formate at the anode. Meanwhile, the cathode undergoes hydrogen evolution reaction to produce H2. Preliminary techno-economic analysis suggests that this strategy has certain economic feasibility and a novel Mn0.1Ni0.9Co2O4-δ rod-shaped fiber (RSFs) catalyst we synthesized can achieve high Faradaic efficiency (> 95%) at 1.42 V vs. RHE with optimistic formate productivity. The high catalytic performance can be attributed to the doping of Mn changing the electronic structure and reducing the metal-oxygen covalency of NiCo2O4, reducing the lattice oxygen oxidation in spinel oxide OER electrocatalysts. This work not only put forward an electrocatalytic strategy for PET microplastic upcycling but also guides the design of electrocatalysts with excellent performance.

9.
ACS Appl Mater Interfaces ; 15(10): 12915-12923, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863000

RESUMEN

Dichloromethane (CH2Cl2) hydrodechlorination to methane (CH4) is a promising approach to remove the halogenated contaminants and generate clean energy. In this work, rod-like nanostructured CuCo2O4 spinels with rich oxygen vacancies are designed for highly efficient electrochemical reduction dechlorination of dichloromethane. Microscopy characterizations revealed that the special rod-like nanostructure and rich oxygen vacancies can efficiently enhance surface area, electronic/ionic transport, and expose more active sites. The experimental tests demonstrated that CuCo2O4-3 with rod-like nanostructures outperformed other morphology of CuCo2O4 spinel nanostructures in catalytic activity and product selectivity. The highest methane production of 148.84 µmol in 4 h with a Faradaic efficiency of 21.61% at -2.94 V (vs SCE) is shown. Furthermore, the density function theory proved oxygen vacancies significantly decreased the energy barrier to promote the catalyst in the reaction and Ov-Cu was the main active site in dichloromethane hydrodechlorination. This work explores a promising way to synthesize the highly efficient electrocatalysts, which may be an effective catalyst for dichloromethane hydrodechlorination to methane.

10.
J Clin Med ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902568

RESUMEN

BACKGROUND: Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS: In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS: We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS: Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.

12.
ACS Appl Mater Interfaces ; 15(9): 11885-11894, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36827641

RESUMEN

Cobalt-manganese spinel catalysts performed unsatisfactory activity at low-temperature and narrow reaction temperature window, which greatly limited the application in NO reduction by CO. Herein, we synthesize a series of Cu-doped CoMn2O4 catalysts and apply to NO reduction by CO. The Cu0.3Co0.7Mn2O4 exhibited superior catalytic performance, reaching 100% NO conversion and 80% N2 selectivity at 250 °C. Detailed structural analysis showed that the introduced Cu replaces some Co in tetrahedral coordination to induce a strong synergistic effect between different metals. This endows the catalyst with the promotion of both electron transfer and oxygen vacancy generation on the catalyst surface. Importantly, the reaction mechanism and pathway were further revealed by in situ diffusion Fourier transform infrared spectroscopy (DRIFTS) and density functional theory (DFT) calculations. The results indicated that the cycle of oxygen vacancy mainly determines the catalytic activity of NO reduction by CO. Notably, Cu doping significantly lowered the energy barrier of the rate-determining step (*CO + O → *Ov + CO2), facilitating the desorption of the CO2 and exposing the active sites for efficient NO reduction with CO. This work offers an effective way for designing the catalyst in NO reduction by CO and provides a reference for exploring the catalytic mechanism of the reaction.

13.
ACS Appl Mater Interfaces ; 15(5): 6631-6638, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705573

RESUMEN

CuFe2O4 spinel has been considered as a promising catalyst for the electrochemical reaction, while the nature of the crystal phase on its intrinsic activity and the kind of active site need to be further explored. Herein, the crystal phase-dependent catalytic behavior and the main active sites of CuFe2O4 spinel for electrochemical dechlorination of 1,2-dichloroethane are carefully studied based on the combination of experiments and theoretical calculations. Cubic and tetragonal CuFe2O4 are successfully prepared by a facile sol-gel method combined with high temperature calcination. Impressively, CuFe2O4 with the cubic phase shows a higher activity and ethylene selectivity compared to CuFe2O4 with the tetragonal phase, suggesting a significant facilitation of electrocatalytic performance by the cubic crystal structure. Moreover, the octahedral Fe atom on the surface of cubic CuFe2O4(311) is the active site responsible to produce ethylene with the energy barrier of 0.40 eV. This work demonstrates the significance of crystal phase engineering for the optimization of electrocatalytic performance and offers an efficient strategy for the development of advanced electrocatalysts.

14.
J Environ Sci (China) ; 123: 96-115, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522017

RESUMEN

Volatile organic compounds (VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the "national plan on environmental improvement for the 13th Five-Year Plan period". Therefore, the development of efficient technologies for removal and recovery of VOCs is of great significance. Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions. Among them, adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects. This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs. Firstly, adsorption and membrane separation were found to be the research hotspots through bibliometric analysis. Then, a comprehensive understanding of their mechanisms, factors, and current application statuses was discussed. Finally, the challenges and perspectives in this emerging field were briefly highlighted.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Adsorción , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Compuestos Orgánicos Volátiles/análisis
15.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497293

RESUMEN

Although an imbalanced gut microbiome is closely associated with colorectal cancer (CRC), how the gut microbiome affects CRC is not known. Long non-coding RNAs (lncRNAs) can affect important cellular functions such as cell division, proliferation, and apoptosis. The abnormal expression of lncRNAs can promote CRC cell growth, proliferation, and metastasis, mediating the effects of the gut microbiome on CRC. Generally, the gut microbiome regulates the lncRNAs expression, which subsequently impacts the host transcriptome to change the expression of downstream target molecules, ultimately resulting in the development and progression of CRC. We focused on the important role of the microbiome in CRC and their effects on CRC-related lncRNAs. We also reviewed the impact of the two main pathogenic bacteria, Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis, and metabolites of the gut microbiome, butyrate, and lipopolysaccharide, on lncRNAs. Finally, available therapies that target the gut microbiome and lncRNAs to prevent and treat CRC were proposed.

16.
Front Neurosci ; 16: 988661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408391

RESUMEN

Background: The accuracy of the deep brain stimulation (DBS) electrode placement is influenced by a myriad of factors, among which pneumocephalus and loss of cerebrospinal fluid that occurs with dural opening during the surgery are considered most important. This study aimed to describe an effective method for decreasing pneumocephalus by comparing its clinical efficacy between the two different methods of opening the dura. Materials and methods: We retrospectively compared two different methods of opening the dura in 108 patients who underwent bilateral DBS surgery in our center. The dural incision group comprised 125 hemispheres (58 bilateral and 9 unilateral) and the dural puncture group comprised 91 (41 bilateral and 9 unilateral). The volume of intracranial air, dural opening time, intraoperative microelectrode recordings (MERs), postoperative electrode displacement, clinical efficacy, and complications were examined. Spearman correlation analysis was employed to identify factors associated with the volume of intracranial air and postoperative electrode displacement. Results: The volume of intracranial air was significantly lower (0.35 cm3 vs. 5.90 cm3) and dural opening time was significantly shorter (11s vs. 35s) in the dural puncture group. The volume of intracranial air positively correlated with dural opening time. During surgery, the sensorimotor area was longer (2.47 ± 1.36 mm vs. 1.92 ± 1.42 mm) and MERs were more stable (81.82% vs. 47.73%) in the dural puncture group. Length of the sensorimotor area correlated negatively with the volume of intracranial air. As intracranial air was absorbed after surgery, significant anterior, lateral, and ventral electrode displacement occurred; the differences between the two groups were significant (total electrode displacement, 1.0mm vs. 1.4mm). Electrode displacement correlated positively with the volume of intracranial air. Clinical efficacy was better in the dural puncture group than the dural incision group (52.37% ± 16.18% vs. 43.93% ± 24.50%), although the difference was not significant. Conclusion: Our data support the hypothesis that opening the dura via puncture rather than incision when performing DBS surgery reduces pneumocephalus, shortens dural opening time, enables longer sensorimotor area and more stable MERs, minimizes postoperative electrode displacement, and may permit a better clinical efficacy.

17.
ACS Omega ; 7(44): 40184-40194, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385835

RESUMEN

CO2 capture from flowing flue gases through adsorption technology is essential to reduce the emission of CO2 to the atmosphere. The rational design of highly efficient carbon-based absorbents with interfacial structures containing interconnected porous structures and abundant adsorption sites might be one of the promising strategies. Here, we report the synthesis of nitrogen-doped carbon aerogels (NCAs) via prepolymerized phenol-melamine-formaldehyde organic aerogels (PMF) by controlling the addition amount of ZnCl2 and the precursor M/P ratio. It has been revealed that NCAs with a higher specific surface area and interconnected porous structures contain a large amount of pyridinic nitrogen and pyrrolic nitrogen. These would act as the intrinsic adsorption sites for highly effective CO2 capture and further improve the CO2/N2 separation efficiencies. Among the prepared samples, NCA-1-2 with a high micropore surface area and high nitrogen content exhibits a high CO2 adsorption capacity (4.30 mmol g-1 at 0 °C and 1 bar) and CO2/N2 selectivity (36.5 at 25 °C, IAST). Under typical flue gas conditions (25 °C and 1.01 bar), equilibrium gas adsorption analysis and dynamic breakthrough measurement associated with a high adsorption capacity of 2.65 mmol g-1 at 25 °C and 1.01 bar and 0.81 mmol g-1 at 25 °C and 0.15 bar. This rationally designed N-doped carbon aerogel with specific interfacial structures and high CO2 adsorption capacity, high selectivity, and adsorption performance remained pretty stable after multiple uses.

18.
Brain Sci ; 12(8)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36009117

RESUMEN

Deep brain stimulation (DBS) is an effective treatment for dyskinesia in patients with Parkinson's disease (PD), among which the therapeutic targets commonly used include the subthalamic nucleus (STN) and the globus pallidus internus (GPi). Levodopa-induced dyskinesia (LID) is one of the common motor complications arising in PD patients on chronic treatment with levodopa. In this article, we retrospectively evaluated the outcomes of LID with the Unified Dyskinesia Rating Scale (UDysRS) in patients who underwent DBS in multiple centers with a GPi or an STN target. Meanwhile, the Med off MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS-Ⅲ) and the levodopa equivalent daily dose (LEDD) were also observed as secondary indicators. PD patients with a GPi target showed a more significant improvement in the UDysRS compared with an STN target (92.9 ± 16.7% vs. 66.0 ± 33.6%, p < 0.0001). Both the GPi and the STN showed similar improvement in Med off UPDRS-III scores (49.8 ± 22.6% vs. 52.3 ± 29.5%, p = 0.5458). However, the LEDD was obviously reduced with the STN target compared with the GPi target (44.6 ± 28.1% vs. 12.2 ± 45.8%, p = 0.006).

20.
ACS Appl Mater Interfaces ; 14(31): 35477-35484, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856806

RESUMEN

Electrocatalytic nitrate reduction is an effective strategy to eliminate nitrate's environmental impact and produce high-value-added ammonia products. However, most of the current reports focus on preparation strategies of catalysts, with poor exploration of the mechanism. In this work, we fabricated a binding-free Cu-doped Co3O4 electrode (Cu-Co3O4) to reveal the structure-activity relationship. Cu-Co3O4 exhibited a maximum Faradaic efficiency of ammonia of up to 86.5% at -0.6 V vs reversible hydrogen electrode in a neutral electrolyte, with the corresponding yield rate of 36.71 mmol h-1 g-1. In situ electrochemical Raman spectroscopy confirmed that the structure of Cu-Co3O4 exhibits excellent stability and durability. Theoretical analysis revealed that the interaction between Cu and Co induces the d-band center position of the mono-metal oxide to shift toward the center to optimize the nitrate reduction intermediate hydrodeoxygenation free-energy change, especially of *NOx (x = 1, 2, and 3). These results offer guidelines for the electrochemical reduction of nitrate with transition metal oxide electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...