Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 234: 113660, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042107

RESUMEN

The occurrence of multidrug-resistant bacteria necessitates the development of new antibacterial agents. This study synthesized artemisinin-zinc nanoparticles (AZ NPs) using a simple green method and investigated their physicochemical properties, antibacterial activity, and oral biological activity. A spherical shape morphology of AZ NPs was observed by scanning and transmission electron microscopy, with a particle size of 73 ± 2.604 nm. Energy dispersive spectrometry analysis showed that the AZ NPs consisted mainly of Zn, C, N, and O elements. According to differential scanning calorimeter analysis, the AZ NPs were stable up to 450 °C. Fourier-transform infrared spectroscopy revealed that artemisinin successfully bound to zinc acetate. The AZ NPs showed antibacterial activity against Salmonella and Escherichia coli, with a minimum inhibitory concentration of 0.056 mg/mL for both and minimum bactericidal concentrations of 0.21 and 0.11 mg/mL, respectively. The mechanisms by which AZ NPs mediate membrane damage were revealed by the downregulation of gene expression, and potassium ion and protein leakage. In vivo safety trials of these drugs revealed low toxicity. After AZ NPs were administered to infected mice, the intestinal bacteria decreased significantly, liver and kidney function were restored, histopathological damage to the liver and spleen were reduced, and the expression of inflammatory cytokines decreased. Therefore, AZ NPs have the potential as an oral antibacterial agent and can be used in antibiotic development and in the pharmaceutical industry.


Asunto(s)
Artemisininas , Nanopartículas del Metal , Animales , Ratones , Zinc , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Artemisininas/farmacología , Pruebas de Sensibilidad Microbiana
2.
Adv Sci (Weinh) ; 10(26): e2303049, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395451

RESUMEN

Antigen delivery based on non-virus-like particle self-associating protein nanoscffolds, such as Aquifex aeolicus lumazine synthase (AaLS), is limited due to the immunotoxicity and/or premature clearance of antigen-scaffold complex resulted from triggering unregulated innate immune responses. Here, using rational immunoinformatics prediction and computational modeling, we screen the T epitope peptides from thermophilic nanoproteins with the same spatial structure as hyperthermophilic icosahedral AaLS, and reassemble them into a novel thermostable self-assembling nanoscaffold RPT that can specifically activate T cell-mediated immunity. Tumor model antigen ovalbumin T epitopes and the severe acute respiratory syndrome coronavirus 2 receptor-binding domain are loaded onto the scaffold surface through the SpyCather/SpyTag system to construct nanovaccines. Compared to AaLS, RPT -constructed nanovaccines elicit more potent cytotoxic T cell and CD4+ T helper 1 (Th1)-biased immune responses, and generate less anti-scaffold antibody. Moreover, RPT significantly upregulate the expression of transcription factors and cytokines related to the differentiation of type-1 conventional dendritic cells, promoting the cross-presentation of antigens to CD8+ T cells and Th1 polarization of CD4+ T cells. RPT confers antigens with increased stability against heating, freeze-thawing, and lyophilization with almost no antigenicity loss. This novel nanoscaffold offers a simple, safe, and robust strategy for boosting T-cell immunity-dependent vaccine development.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Inmunidad Celular , Linfocitos T Citotóxicos , Antígenos de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...