Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Plant Biotechnol J ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713743

RESUMEN

CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.

2.
Ecotoxicol Environ Saf ; 276: 116335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626603

RESUMEN

Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.


Asunto(s)
Candida parapsilosis , Etanol , Oryza , Vino , Concentración de Iones de Hidrógeno , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Etanol/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Uretano/metabolismo , Simulación de Dinámica Molecular , Biodegradación Ambiental , Mutación , Estabilidad de Enzimas , Pueblos del Este de Asia
3.
Coron Artery Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38595165

RESUMEN

OBJECTIVES: This study aimed to analyze the ability of subendocardial viability ratio (SEVR) to predict the degree of coronary artery stenosis and the relationship between SEVR and the incidence of short-term cardiovascular endpoint events. METHOD: The indexes of 243 patients with chest pain were collected.. Binary logistic regression analyses were performed using the dichotomous outcome of high and non-high SYNTAX scores. Receiver operating characteristic curves were employed to comparatively analyze the diagnostic efficiencies of the indices and models. A survival analysis combined with the Cox regression analysis was performed using the Kaplan-Meier method to understand the relationship between the SEVR and the incidence of cardiovascular events within 1 year in patients with coronary heart disease (CHD). RESULTS: SEVR was significantly lower (P < 0.05) in the high-stenosis group than control and low-stenosis groups. The diagnostic efficacy of SEVR [area under the curve (AUC) = 0.861] was better than those of age (AUC = 0.745), ABI (AUC = 0.739), and AIx@HR75 (AUC = 0.659). The cutoff SEVR was 1.105. In patients with confirmed CHD who had been discharged from the hospital for 1 year, only SEVR affected survival outcomes (hazard ratio = 0.010; 95% confidence interval: 0.001-0.418; P = 0.016). CONCLUSION: A significant decrease in SEVR predicted severe coronary artery stenosis, with a cutoff value of 1.105 and an accuracy of 0.861. In patients with CHD, the lower the SEVR, the higher was the rate of cardiovascular events at 1 year after hospital discharge.

4.
STAR Protoc ; 5(2): 102994, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38568815

RESUMEN

Here, we present a protocol for 3D printing heart tissues using thiol-norbornene photoclick collagen (NorCol). We describe steps for synthesizing NorCol, preparing bioink and the support bath, and cell-laden printing. We then detail procedures for the loading of C2C12 cells into NorCol, ensuring structural integrity and cell viability after printing. This protocol is adaptable to various cell lines and allows for the printing of diverse complex structures, which can be used in drug screening and disease modeling.

5.
Waste Manag ; 182: 44-54, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636125

RESUMEN

Pyrolysis can effectively convert waste tires into high-value products. However, the sulfur-containing compounds in pyrolysis oil and gas would significantly reduce the environmental and economic feasibility of this technology. Here, the desulfurization and upgrade of waste tire pyrolysis oil and gas were performed by adding different metal oxides (Fe2O3, CuO, and CaO). Results showed that Fe2O3 exhibited the highest removal efficiency of 87.7 % for the sulfur-containing gas at 600 °C with an outstanding removal efficiency of 99.5 % for H2S. CuO and CaO were slightly inferior to Fe2O3, with desulfurization efficiencies of 75.9 % and 45.2 % in the gas when added at 5 %. Fe2O3 also demonstrated a notable efficacy in eliminating benzothiophene, the most abundant sulfur compound in pyrolysis oil, with a removal efficiency of 78.1 %. Molecular dynamics simulations and experiments showed that the desulfurization mechanism of Fe2O3 involved the bonding of Fe-S, the breakage of C-S, dehydrogenation and oxygen migration process, which promoted the conversion of Fe2O3 to FeO, FeS and Fe2(SO4)3. Meanwhile, Fe2O3 enhanced the cyclization and dehydrogenation reaction, facilitating the upgrade of oil and gas (monocyclic aromatics to 57.4 % and H2 to 22.3 %). This study may be helpful for the clean and high-value conversion of waste tires.


Asunto(s)
Óxidos , Pirólisis , Óxidos/química , Azufre/química , Incineración/métodos , Compuestos Férricos/química , Gases/química , Goma/química , Compuestos de Calcio/química , Cobre
6.
Physiol Meas ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688301

RESUMEN

OBJECTIVE: Intermittent hypoxia, the primary pathology of obstructive sleep apnea (OSA), causes cardiovascular responses resulting in changes in hemodynamic parameters such as stroke volume (SV), blood pressure (BP), and heart rate (HR). However, previous studies have produced very different conclusions, such as suggesting that SV increases or decreases during apnea. A key reason for drawing contrary conclusions from similar measurements may be due to ignoring the time delay in acquiring response signals. By analyzing the signals collected during hypoxia, we aim to establish criteria for determining the delay time between the onset of apnea and the onset of physiological parameter response. Approach. We monitored oxygen saturation (SpO2), transcutaneous oxygen pressure (TcPO2), and hemodynamic parameters SV, HR, and BP, during sleep in 66 patients with different OSA severity to observe body's response to hypoxia and determine the delay time of above parameters. Data were analyzed using the Kruskal-Wallis test, Quade test. and Spearman test. Main Results. We found that simultaneous acquisition of various parameters inevitably involved varying degrees of response delay (7.12 - 25.60 seconds). The delay time of hemodynamic parameters was significantly shorter than that of SpO2 and TcPO2 (p < 0.01). OSA severity affected the response delay of SpO2, TcPO2, SV, MBP, and HR (p < 0.05). SV delay time was negatively correlated with the apnea-hypopnea index (r = -0.4831, p < 0.0001). Significance. The real body response should be determined after removing the effect of delay time, which is the key to solve the problem of drawing contradictory conclusions from similar studies. The methods and important findings presented in this study provide key information for revealing the true response of the cardiovascular system during hypoxia, indicating the importance of proper signal analysis for correctly interpreting the cardiovascular hemodynamic response phenomena and exploring their physiological and pathophysiological mechanisms.

7.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418607

RESUMEN

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Apoptosis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
8.
Front Psychiatry ; 15: 1273411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374974

RESUMEN

Objective: In this study, we explore the core and bridge symptoms of demoralization in female cancer patients in China, and provide a basis for precise psychological intervention among female cancer patients. Methods: This study used a cross-sectional survey. Participants were recruited from three third-class hospitals in Jiangsu Province from June 2022 to June 2023 using the convenience sampling method. The severity of each symptom of demoralization was investigated in female cancer patients using the Demoralization Scale (DS). Network analysis was performed using the R language to identify core and bridge symptoms in the network and further explore some characteristic edge connections in the network. Results: The network structure model of demoralization had strong accuracy and stability. In the network, the symptoms with the highest strength centrality were "Discouragement" (C3, strength=2.19), "No self-worth" (A3, strength=1.21), "Don't want to live" (A5, strength=1.20), "Hopeless" (D4, strength=0.81), and "Vulnerability" (B3, strength=0.74), respectively. The bridge strength analysis identified "Hopeless" (D4, bridge strength=0.92), "Discouragement" (C3, bridge strength=0.85), "No self-worth" (A3, bridge strength=0.75), "Poor spirits" (E2, bridge strength=0.71), and "Vulnerability" (B3, bridge strength=0.69) as the bridge symptoms. The strongest edge connections of all dimensions were "No self-worth" and "Worthless" (A3-E6, edge weighting=0.27), "Poor spirits" and "Loss of emotional control" (E2-D1, edge weighting=0.22), "Discouragement" and "Vulnerability" (C3-B3, edge weighting=0.14), and "Hopeless" and "No meaning of survival" (D4-A4, edge weighting=0.12). Conclusion: "Discouragement (C3)", "No self-worth (A3)", "Hopeless (D4)", and "Vulnerability (B3)" are both core symptoms and bridge symptoms. These symptoms can not only trigger a patient's demoralization but also stimulate more severe symptom clusters through interactions. The early recognition of and intervention regarding these symptoms could be important for the prevention and treatment of demoralization among female cancer patients.

9.
Sci Total Environ ; 918: 170506, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307285

RESUMEN

Groundwater contamination from abandoned pesticide sites is a prevalent issue in China. To address this problem, natural attenuation (NA) of pollutants has been increasingly employed as a management strategy for abandoned pesticide sites. However, limited studies have focused on the long-term NA process of co-existing organic pollutants in abandoned pesticide sites by an integrated approach. In this study, the NA of benzene, toluene, ethylbenzene, and xylene (BTEX), and chlorobenzenes (CBs) in groundwater of a retired industry in China was systematically investigated during the monitoring period from June 2016 to December 2021. The findings revealed that concentrations of BTEX and CBs were effectively reduced, and their NA followed first-order kinetics with different rate constants. The sulfate-reducing bacteria, nitrate-reducing bacteria, fermenting bacteria, aromatic hydrocarbon metabolizing bacteria, and reductive dechlorinating bacteria were detected in groundwater. It was observed that distinct environmental parameters played a role in shaping both overall and key bacterial communities. ORP (14.72%) and BTEX (12.89%) were the main drivers for variations of the whole and key functional microbial community, respectively. Moreover, BTEX accelerated reductive dechlorination. Furthermore, BTEX and CBs exhibited significant enrichment of 13C, ranging from +2.9 to +27.3‰, demonstrating their significance in situ biodegradation. This study provides a scientific basis for site management.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Plaguicidas , Contaminantes Químicos del Agua , Benceno/análisis , Tolueno/análisis , Xilenos/análisis , Clorobencenos/metabolismo , Plaguicidas/análisis , Derivados del Benceno/análisis , Isótopos/análisis , Bacterias/metabolismo , Contaminantes Ambientales/análisis , Biodegradación Ambiental , Contaminantes Químicos del Agua/análisis
10.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38189249

RESUMEN

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Acetiltransferasas N-Terminal , Fosfotransferasas (Aceptor de Grupo Alcohol) , Niño , Preescolar , Humanos , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antivirales , Coenzima A/metabolismo , Infecciones por Coxsackievirus , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/virología , Proteínas de la Membrana/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Biogénesis de Organelos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Replicación Viral/fisiología
11.
Front Oncol ; 14: 1276637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283858

RESUMEN

Inflammatory breast cancer (IBC) is an aggressive and rare form of breast cancer with a poor prognosis. The occurrence of bilateral IBC in a short period of time is extremely rare. In this case report, a 54-year-old woman diagnosed with invasive ductal carcinoma of the left breast underwent lumpectomy, lymph node dissection, chemotherapy, and radiotherapy but opted against trastuzumab treatment. Four years later, she experienced bilateral breast inflammation, skin changes, edema, and heat (calor). Biopsies confirmed breast cancer metastasis to both breasts. Whole-Exome Sequencing revealed genetic mutations, including PIK3CA and C4orf54, in both primary and recurrent tumors, with significant downregulation in the recurrent tumors. KEGG analysis suggested potential enrichment of axon guidance signal pathways in both tumors. The patient showed a partial response after treatment with liposome paclitaxel, along with targeted therapy using trastuzumab and pertuzumab. This case report sheds light on the rare occurrence of bilateral inflammatory breast cancer post-HER-2 treatment and highlights the importance of genetic profiling in understanding the disease. Further research on clinical targets for breast cancer management is warranted.

12.
PLoS Pathog ; 20(1): e1011967, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271479

RESUMEN

Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Humanos , Catelicidinas/farmacología , Internalización del Virus , Antivirales/metabolismo
13.
Biophys Chem ; 306: 107171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194817

RESUMEN

Abnormal aggregation and fibrillogenesis of amyloid-ß protein (Aß) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aß fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aß aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aß1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-ß-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aß1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aß1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aß1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aß, and promote further exploration of the therapeutic strategy against AD.


Asunto(s)
Enfermedad de Alzheimer , Glucósidos , Luteolina , Fragmentos de Péptidos , Humanos , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/metabolismo
14.
Bioorg Chem ; 143: 107078, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181661

RESUMEN

EZH2 (enhancer of zeste homolog 2) is one of the most important histone methyltransferases (HMTs), and overexpression of EZH2 can lead to proliferation, migration and angiogenesis of tumor cells. But most of EZH2 inhibitors are only effective against some hematologic malignancies and have poor efficacy against solid tumors. Here, we report the design, synthesis, and evaluation of highly potent proteolysis targeting chimeric (PROTACs) small molecules targeting EZH2. We developed a potent and effective EZH2 degrader P4, which effectively induced EZH2 protein degradation and inhibited breast cancer cell growth. Further studies showed that P4 can significantly decrease the degree of H3K27me3 in MDA-MB-231 cell line, induce apoptosis and G0/G1 phase arrest in Pfeiffer and MDA-MB-231 cell lines. Therefore, P4 is a potential anticancer molecule for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proteína Potenciadora del Homólogo Zeste 2 , Quimera Dirigida a la Proteólisis , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/farmacología , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología
15.
Mol Ecol Resour ; 24(3): e13914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38108568

RESUMEN

Quercus section Cyclobalanopsis represents a dominant woody lineage in East Asian evergreen broadleaved forests. Regardless of its ecological and economic importance, little is known about the genomes of species in this unique oak lineage. Quercus glauca is one of the most widespread tree species in the section Cyclobalanopsis. In this study, a high-quality haplotype-resolved reference genome was assembled for Q. glauca from PacBio HiFi and Hi-C reads. The genome size, contig N50, and scaffold N50 measured 902.88, 7.60, and 69.28 Mb, respectively, for haplotype1, and 913.28, 7.20, and 71.53 Mb, respectively, for haplotype2. A total of 37,457 and 38,311 protein-coding genes were predicted in haplotype1 and haplotype2, respectively. Homologous chromosomes in the Q. glauca genome had excellent gene pair collinearity. The number of R-genes in Q. glauca was similar to most East Asian oaks but less than oak species from Europe and America. Abundant structural variation in the Q. glauca genome could contribute to environmental stress tolerance in Q. glauca. Sections Cyclobalanopsis and Cerris diverged in the Oligocene, in agreement with fossil records for section Cyclobalanopsis, which document its presence in East Asia since the early Miocene. The demographic dynamics of closely related oak species were largely similar. The high-quality reference genome provided here for the most widespread species in section Cyclobalanopsis will serve as an essential genomic resource for evolutionary studies of key oak lineages while also supporting studies of interspecific introgression, local adaptation, and speciation in oaks.


Asunto(s)
Quercus , Quercus/genética , Filogenia , Haplotipos , Bosques , Demografía
16.
ACS Sens ; 9(1): 464-473, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38153408

RESUMEN

Breath analysis using gas sensors is an emerging method for disease screening and diagnosis. Since it is closely related to the lipid metabolism and blood ketone concentration of the body, the detection of acetone content in exhaled breath is helpful for the screening and monitoring of diabetes and ketosis. The development of an acetone sensor with high selectivity, stability, and low detection limit has been the research focus for this purpose. Here, we developed a mixed potential type acetone sensor based on Gd2Zr2O7 solid electrolyte and CoSb2O6 sensing electrode. The developed sensor exhibits an extremely low detection limit of 10 ppb, enabling linear detection for acetone in an extremely wide range of 10 ppb-100 ppm. The good results of systematic evaluation on selectivity, repeatability, and stability prove the superior reliability of the sensor, which is a prerequisite for the application in actual breath detection. The ability of the sensor to distinguish healthy people from diabetic ketosis patients was confirmed by using the sensor to detect the breath of healthy people and diabetic patients, proving the feasibility of the sensor in the diagnosis and monitoring of diabetic ketosis.


Asunto(s)
Diabetes Mellitus , Cetoacidosis Diabética , Humanos , Cetoacidosis Diabética/diagnóstico , Acetona/análisis , Límite de Detección , Reproducibilidad de los Resultados , Cetonas , Diabetes Mellitus/diagnóstico
17.
Front Pharmacol ; 14: 1295806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089056

RESUMEN

Introduction: Traditional animal- and mineral-based medicines are widely used in the Gansu-Ningxia-Inner Mongolia junction zone, a region with diverse ethnic groups and cultures. This study aims to document, conserve, and explore the potential of these medicines for further research and sustainable development of ethnic medicine. Methods: We interviewed 56 informants from different ethnic backgrounds and analyzed their responses quantitatively. Additionally, a comparative analysis with adjacent regions was conducted, providing invaluable contextual insights. Results: The study unveiled a diverse array of traditional medicines in the Gansu-Ningxia-Inner Mongolia junction zone. A total of 47 animal-based medicines were identified, ranging from insects and scorpios to distinctive animal organs. Of notable significance was Moschus, emerging as a pivotal traditional Chinese medicine resource. In parallel, 12 mineral-based medicines were cataloged, procured both locally and from "pharmacies". Female informants, frequently local herbal practitioners, demonstrated broader knowledge of medicines. The analysis of 13 villages revealed varying perceptions of medicine importance, underscoring the wealth of traditional knowledge. Specific medicines, such as Feng-Mi and Xie-Zi, were widely used and valued in local healthcare practices for their cultural and medicinal benefits. Conclusion: This study provides a comprehensive overview of traditional animal- and mineral-based medicines in the Gansu-Ningxia-Inner Mongolia junction zone. It highlights the need for preserving and applying these practices in a sustainable manner. It also lays a solid foundation for future research on ethnic medicine, which can contribute to the holistic wellbeing of local communities.

18.
Food Chem X ; 20: 100961, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144828

RESUMEN

Morchella sextelata and Morchella importuna are the main cultivars of morel. However, the key compounds affecting their flavors (taste and odor) are currently unknown. Here, an ultra performance tandem mass spectrometry combined with two-dimensional gas chromatography-time-of-flight mass spectrometry method was used to detect and relatively quantify the metabolites in both morel cultivars. A total of 631 non-volatile compounds and 242 volatile compounds were identified. The odor activity value was calculated to assess the contribution of key odor volatile. The results indicated that M. importuna had a sweeter flavor than M. sextelata. The former posed more prominent mushroom flavor than the latter based on the correlation analysis of the metabolites. The flavor differences of the two morel cultivars are highly relevant with the content of lipids, carbohydrates, amino acids and derivatives, alcohols and ketones. This study provides new insights into the theoretical basis for the flavor differences in both morel cultivars.

19.
Animals (Basel) ; 13(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38136858

RESUMEN

Coat color and birth weight, as easily selected traits in cattle, play important roles in cattle breeding. Therefore, we carried out a genome-wide association study on birth weight and coat color to identify loci or potential linkage regions in 233 Simmental × Holstein crossbred beef cattle. The results revealed that nine SNPs were significantly associated with coat color (rs137169378, rs110022687, rs136002689, Hypotrichosis_PMel17, PMEL_1, rs134930689, rs383170073, rs109924971, and rs109146332), and these were in RNF41, ZC3H10, ERBB3, PMEL, and OR10A7 on BTA5. Interestingly, rs137169378, rs110022687, rs136002689, Hypotrichosis_PMel17, and PMEL_1 showed strong linkage disequilibrium (r2 > 0.8) and were significantly associated with coat color. Notably, Hypotrichosis_PMel17 and PMEL_1 were located in the gene PMEL (p = 2.22 × 10-18). Among the five significant SNPs associated with coat color, the birth weight of heterozygous individuals (AB) was greater than that of homozygous individuals (AA). Notably, the birth weight of heterozygous individuals with Hypotrichosis_PMel17 and PMEL_1 genotypes was significantly greater than that of homozygous individuals (0.01 < p < 0.05). Interestingly, the two loci were homozygous in black/white individuals and heterozygous in gray/white individuals, and the birth weight of heterozygous brown/white individuals (43.82 ± 5.25 kg) was greater than that of homozygous individuals (42.58 ± 3.09 kg). The birth weight of calves with the parental color (41.95 ± 3.53 kg) was significantly lower than that of calves with a non-parental color (43.54 ± 4.78 kg) (p < 0.05), and the birth weight of gray/white individuals (49.40 ± 7.11 kg) was the highest. Overall, PMEL appears to be a candidate gene affecting coat color in cattle, and coat color may have a selective effect on birth weight. This study provides a foundation for the breeding of beef cattle through GWAS for coat color and birth weight.

20.
Small ; : e2308404, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148325

RESUMEN

Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...