Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Exp Ther Med ; 27(1): 27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125362

RESUMEN

The reprogramming of lipid metabolism serves an important role in occurrence and development of liver cancer. Fatty acid hydroxylase domain containing 2 (FAXDC2) is a hydroxylase involved in the synthesis of cholesterol and sphingomyelin and downregulated in various types of cancer. There are no reports on the relationship between FAXDC2 and liver carcinogenesis. The present study used multiple portals and publicly available tools to explore its correlation with liver cancer. The results showed that the expression of FAXDC2 decreased in liver cancer and the methylation level near the promoter increased. Patients with liver cancer and with low expression of FAXDC2 had a poor prognosis. Gain of function and loss of function strategies were performed to evaluate its roles in liver cancer cells. CCK-8 assay showed that overexpression of FAXDC2 inhibited the viability of liver cancer cells (HepG2). Flow cytometry analysis indicated that HepG2 cells with overexpressing FAXDC2 showed an S phase arrest, associated with cyclin-dependent kinase 2 decreased. Transwell experiments showed that increasing FAXDC2 inhibited HepG2 cell invasion ability, accompanied by the upregulation of E-cadherin. Notably, knockdown of FAXDC2 had no significant effect on cell cycle and invasion functions. Based on the cBioPortal platform, FAXDC2 was predicted to closely correlate to the ERK signal in tumorigenesis. Western blotting results showed that overexpression of FAXDC2 decreased the phosphorylation level of ERK in liver cancer cells. The present study first identified FAXDC2 as a liver cancer suppressor, which might inhibit the proliferation and invasion of liver cancer cells through the mechanism associated with ERK signaling. The present study provided a possible new target for the diagnosis and treatment of liver cancer.

2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003559

RESUMEN

Ankyrin repeat and suppression-of-cytokine-signaling box (Asb) proteins, a subset of ubiquitin ligase E3, include Asb5 with six ankyrin-repeat domains. Zebrafish harbor two asb5 gene isoforms, asb5a and asb5b. Currently, the effects of asb5 gene inactivation on zebrafish embryonic development and heart function are unknown. Using CRISPR/Cas9, we generated asb5a-knockout zebrafish, revealing no abnormal phenotypes at 48 h post-fertilization (hpf). In situ hybridization showed similar asb5a and asb5b expression patterns, indicating the functional redundancy of these isoforms. Morpholino interference was used to target asb5b in wild-type and asb5a-knockout zebrafish. Knocking down asb5b in the wild-type had no phenotypic impact, but simultaneous asb5b knockdown in asb5a-knockout homozygotes led to severe pericardial cavity enlargement and atrial dilation. RNA-seq and cluster analyses identified significantly enriched cardiac muscle contraction genes in the double-knockout at 48 hpf. Moreover, semi-automatic heartbeat analysis demonstrated significant changes in various heart function indicators. STRING database/Cytoscape analyses confirmed that 11 cardiac-contraction-related hub genes exhibited disrupted expression, with three modules containing these genes potentially regulating cardiac contractile function through calcium ion channels. This study reveals functional redundancy in asb5a and asb5b, with simultaneous knockout significantly impacting zebrafish early heart development and contraction, providing key insights into asb5's mechanism.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Contracción Muscular , Organogénesis , Isoformas de Proteínas/metabolismo
3.
Funct Integr Genomics ; 23(4): 312, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37775648

RESUMEN

Recent advances in immunotherapeutic approaches have the potential to bring new hope to the treatment of pancreatic cancer. The tumor microenvironment contributes significantly to tumor development and progression. In this study, miR-429 overexpression was found to inhibit proliferation, invasion, and clonogenicity while promoting apoptosis in HepG2 cells. Furthermore, co-culture of miR-429-overpressing or silenced HepG2 cells with PBMCs showed that miR-429 induced CD4+ and CD8+ T cell infiltration, decreased the numbers of Tregs, inhibited CD8+ T cell apoptosis and exhaustion, and enhanced CD8+ T cell functions in PBMCs. miR-429 was found to prevent an immunosuppressive HCC microenvironment by targeting and suppressing PD-L1. In a C57BL/6 mouse subcutaneous xenograft tumor model, overexpression of miR-429 reduced tumorigenesis and both tumor volumes and weights were decreased relative to controls. In addition, CD4+ and CD8+ T cells were increased, Tregs were reduced, and CD8+ T cell apoptosis and depletion were reduced in the tumor tissues induced by miR-429-overexpressing HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Humanos , Ratones , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Ratones Endogámicos C57BL , MicroARNs/genética , Microambiente Tumoral
4.
Front Cell Dev Biol ; 11: 1093113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457298

RESUMEN

Mesenchymal stem cells (MSCs) are one of the most potent therapeutic strategies for repairing cardiac injury. It has been shown in the latest studies that MSCs cannot survive in the heart for a long time. Consequently, the exosomes secreted by MSCs may dominate the repair of heart injury and promote the restoration of cardiac cells, vascular proliferation, immune regulation, etc. Based on the current research, the progress of the acting mechanism, application prospects and challenges of exosomes, including non-coding RNA, in repairing cardiac injuries are summarised in this article.

5.
Cell Tissue Res ; 393(1): 163-179, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37233752

RESUMEN

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are used to regenerate the myocardium during cardiac repair after myocardial infarction. However, the regulatory mechanism underlying their ability to form mesodermal cells and differentiate into cardiomyocytes remains unclear. Here, we established a human-derived MSCs line isolated from healthy umbilical cords and established a cell model of the natural state to examine the differentiation of hUC-MSCs into cardiomyocytes. Quantitative RT-PCR, western blotting, immunofluorescence, flow cytometry, RNA Seq, and inhibitors of canonical Wnt signalling were used to detect the germ-layer markers T and MIXL1; the markers of cardiac progenitor cells MESP1, GATA4, and NKX2.5 and the cardiomyocyte-marker cTnT to identify the molecular mechanism associated with PYGO2, a key component of the canonical Wnt signalling pathway that regulates the formation of cardiomyocyte-like cells. We demonstrated that PYGO2 promotes the formation of mesodermal-like cells and their differentiation into cardiomyocytes through the hUC-MSC-dependent canonical Wnt signalling by promoting the early-stage entry of ß-catenin into the nucleus. Surprisingly, PYGO2 did not alter the expression of the canonical-Wnt, NOTCH, or BMP signalling pathways during the middle-late stages. In contrast, PI3K-Akt signalling promoted hUC-MSCs formation and their differentiation into cardiomyocyte-like cells. To the best of our knowledge, this is the first study to demonstrate that PYGO2 uses a biphasic mechanism to promote cardiomyocyte formation from hUC-MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Vía de Señalización Wnt , Diferenciación Celular , Cordón Umbilical , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Dis Markers ; 2022: 6993994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398031

RESUMEN

Abnormal activation of the classical Wnt pathway has been reported in non-small-cell lung cancer (NSCLC) previously. Pygo family genes, the core regulators of Wnt/ß-catenin signaling, were also reported to be involved in tumorigenesis. However, the role of the homolog Pygo1 in human lung cancer remains unclear. In the current study, we demonstrated an association of increased Pygo1 expression with consistent high nuclear ß-catenin signals across pathological tissue samples of early-stage human NSCLC. Overexpression of Pygo1 in lung cancer cells resulted in enhanced G1/S cell phase transformation, reduced apoptosis, and increased cell proliferation. These changes were accompanied by the downregulation of cell cycle-related proteins, such as RB, p16, p53, and p27Kip1, and increased expression of CyclinE1. Migration, wound healing, and colony formation assays revealed that Pygo1 overexpression enhanced the invasion and migration of lung cancer cells, increased the formation of clones, and suppressed E-cadherin expression. In addition, overexpression of Pygo1 in lung cancer cells led to an increase of ß-catenin/TCF4 complex, as well as upregulated expression of target genes of ß-catenin. In vivo experiments also revealed that Pygo1 overexpression promoted the tumorigenicity of a xenograft tumor model, while Wnt inhibition partially blocked the effect of Pygo1 overexpression. In conclusion, Pygo1 affects human NSCLC via the canonical Wnt/ß-catenin pathway, which provides new clues for lung cancer pathology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , beta Catenina/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Vía de Señalización Wnt/genética
7.
Hum Cell ; 35(6): 1722-1735, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36085540

RESUMEN

Cardiovascular disease still has the highest mortality. Gene-modified mesenchymal stromal/stem cells could be a promising therapy. Pygo plays an important role in embryonic development and regulates life activities with a variety of regulatory mechanisms. Therefore, this study aimed to investigate whether the overexpression of the PYGO1 gene can promote the differentiation of human umbilical cord-derived mesenchymal stromal/stem cells (HUC-MSCs) into early cardiac lineage cells and to preliminary explore the relevant mechanisms. In this study, HUC-MSCs were isolated by the explant method and were identified by flow cytometry and differentiation assay, followed by transfected with lentivirus carrying the PYGO1 plasmid. In PYGO1 group (cells were incubated with lentiviral-PYGO1), the mRNA expressions of cardiac differentiation-specific markers (MESP1, NKX2.5, GATA4, MEF2C, ISL1, TBX5, TNNT2, ACTC1, and MYH6 genes) and the protein expressions of NKX2.5 and cTnT were significantly up-regulated compared with the NC group (cells were incubated with lentiviral-empty vector). In addition, the proportion of NKX2.5, GATA4, and cTnT immunofluorescence-positive cells increased with the inducement time. Overexpression of PYGO1 statistically significantly increased the relative luciferase expression level of Topflash plasmid, the protein expression level of ß-catenin and the mRNA expression level of CYCLIND1. Compared with the control group, decreased protein levels of NKX2.5 and cTnT were detected in PYGO1 group after application of XAV-939, the specific inhibitor of the canonical Wnt/ß-catenin pathway. Our study suggests that overexpression of PYGO1 significantly promotes the differentiation of HUC-MSCs into early cardiac lineage cells, which is regulated by the canonical Wnt/ß-catenin signaling.


Asunto(s)
Células Madre Mesenquimatosas , beta Catenina , Diferenciación Celular/genética , Humanos , ARN Mensajero/metabolismo , Cordón Umbilical , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
8.
Exp Ther Med ; 24(3): 572, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35978921

RESUMEN

Transmembrane protein 121 (TMEM121) is isolated from the chicken heart using subtraction hybridisation. A previous study by the authors indicated that TMEM121 is highly expressed in adult mouse hearts and acts as an inhibitor of pathological cardiac hypertrophy. In the present study, the association between TMEM121 and cancer was investigated using bioinformatics tools, including Tumour Immune Estimation Resource (TIMER) 2.0, cBioPortal, LinkedOmics analysis, Kaplan-Meier plotter and UALCAN analysis. The expression, genetic variation, gene interaction network and co-expression pattern of TMEM121 in tumours were analysed. The results revealed that TMEM121 was expressed in various tumours and significantly downregulated in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) when compared with its expression in paracancerous tissues, whereas the methylation level of its promoter was increased in tumour tissues. Additionally, associations between TMEM121 and the PI3K/AKT signalling pathway, as well as the expression of cancer-related molecules, were detected. The aforementioned bioinformatics analysis suggests that TMEM121 may be involved in the development of cervical cancer. Therefore, gain-of-function and loss-of-function experiments in HeLa cells were conducted to verify the role of TMEM121 in cervical cancer. The assay using Cell Counting Kit-8 (CCK-8) revealed that the cell viability of HeLa cells with TMEM121 overexpression was significantly reduced. High TMEM121 expression inhibited HeLa cell migration, as indicated by the decrease in the cell scratch healing rate. The western blot assay revealed that TMEM121 overexpression downregulated the expression of B-cell lymphoma 2 (BCL-2), cyclin D1, cyclin E2 and phosphorylated (p)-AKT, while upregulating that of p27, E-cadherin and p-p38. When TMEM121 was knocked down, retinoblastoma protein (RB), p53, p27, E-cadherin, p-JNK and p-p38 were inhibited, but cyclin E1 was promoted. By combining bioinformatics and experimental biology in the present study, the results demonstrated for the first time, to the best of our knowledge, that TMEM121 may be a novel inhibitor of cervical cancer that is linked to multiple signalling pathways, paving the way for the development of novel diagnostic and therapeutic strategies.

9.
Dev Comp Immunol ; 127: 104291, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34710469

RESUMEN

Spring viremia of carp virus (SVCV) causes severe morbidity and mortality in grass carp (Ctenopharyngodon idellus) in Europe, America and several Asian countries. We found that FKBP5 (FK506-binding protein 5) is an SVCV infection response factor; however, its role in the innate immune mechanism caused by SVCV infection remains unknown. This study cloned gcFKBP5 (grass carp FKBP5) and made its mimic protein structure for function discussion. We found that gcFKBP5 expression in the primary innate immune organs of grass carp, including intestine, liver and spleen, was highly upregulated by SVCV in 24 h, with a similar result in fish cells by poly(I:C) treatment. gcFKBP overexpression aggravates viral damage to cells and increases viral replication. Furthermore, SVCV engages gcFKBP5 interacting with TRAF2 (tumour necrosis factor receptor-associated factor 2) to promote host cell apoptosis for supporting viral replication. The enhanced viral replication seems not to be due to the repression of IFN and other antiviral factors as expected. For the first time, these data show the pivotal role of gcFKBP5 in the innate immune response of grass carp to SVCV infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Proteínas de Unión a Tacrolimus , Replicación Viral , Animales , Apoptosis , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , Rhabdoviridae/fisiología , Factor 2 Asociado a Receptor de TNF/genética , Proteínas de Unión a Tacrolimus/metabolismo , Viremia/metabolismo , Viremia/virología
10.
Oncol Lett ; 22(1): 532, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34079591

RESUMEN

Required for meiotic nuclear division 5 homolog A (RMND5A) functions as an E3 ubiquitin ligase. To date, few studies have investigated the role of RMND5A in cancer. In the present study, the expression levels of RMND5A in multiple types of cancer were analyzed using the Gene Expression Profiling Interactive Analysis platform. The results revealed that RMND5A was highly expressed and associated with overall survival in patients with pancreatic adenocarcinoma (PAAD). A wound-healing assay revealed that RMND5A overexpression significantly increased cell migration in the PAAD cell lines AsPC-1 and PANC-1. In silico analysis predicted that RMND5A was a potential target of microRNA(miR)-590-5p. Further in vitro experiments demonstrated that overexpression of miR-590-5p downregulated the expression levels of RMND5A and decreased the migratory ability of the AsPC-1 and PANC-1 cell lines. In addition, overexpression of miR-590-5p attenuated the promoting effects of RMND5A on the migration of AsPC-1 and PANC-1 cells. The results of the present study may further elucidate the mechanisms underlying PAAD progression and provide novel targets for the treatment of PAAD.

11.
Am J Physiol Heart Circ Physiol ; 320(4): H1634-H1645, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33635162

RESUMEN

Wnt/ß-catenin signaling plays a key role in pathological cardiac remodeling in adults. The identification of a tissue-specific Wnt/ß-catenin interaction factor may provide a tissue-specific clinical targeting strategy. Drosophila Pygo encodes the core interaction factor of Wnt/ß-catenin. Two Pygo homologs (Pygo1 and Pygo2) have been identified in mammals. Different from the ubiquitous expression profile of Pygo2, Pygo1 is enriched in cardiac tissue. However, the role of Pygo1 in mammalian cardiac disease is yet to be elucidated. In this study, we found that Pygo1 was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios, and increased cell size. The canonical ß-catenin/T-cell transcription factor 4 (TCF4) complex was abundant in Pygo1-overexpressing transgenic (Pygo1-TG) cardiac tissue, and the downstream genes of Wnt signaling, that is, Axin2, Ephb3, and c-Myc, were upregulated. A tail vein injection of ß-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodeling in Pygo1-TG mice. Furthermore, in vivo downregulated pygo1 during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for tissue-specific clinical treatment via targeting this pathway.NEW & NOTEWORTHY In this study, we found that Pygo1 is associated with human pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy. Meanwhile, cardiac function was improved when expression of Pygo1 was interfered in hypertrophy-model mice. Our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/ß-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Vía de Señalización Wnt , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/patología , Isoproterenol , Masculino , Ratones Transgénicos , Miocardio/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Receptor EphB3/genética , Receptor EphB3/metabolismo , Tiazolidinas/farmacología , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/antagonistas & inhibidores
12.
Sci Rep ; 10(1): 14167, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843646

RESUMEN

BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.


Asunto(s)
Moléculas de Adhesión Celular/biosíntesis , Proteínas Musculares/biosíntesis , Tetralogía de Fallot/genética , Obstrucción del Flujo Ventricular Externo/genética , Anomalías Múltiples , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/fisiología , Niño , Preescolar , Anomalías de los Vasos Coronarios , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Foramen Oval Permeable , Regulación de la Expresión Génica , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/fisiología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Proteínas Musculares/genética , Proteínas Musculares/fisiología , ARN Mensajero/genética , Tetralogía de Fallot/complicaciones , Tetralogía de Fallot/metabolismo , Tetralogía de Fallot/patología , Obstrucción del Flujo Ventricular Externo/embriología , Obstrucción del Flujo Ventricular Externo/etiología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
13.
Exp Ther Med ; 19(3): 2236-2242, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32104289

RESUMEN

Lung cancer is one of the most prevalent cancer types worldwide, and non-small-cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Despite the notable prevalence of NSCLC, the mechanisms underlying its progression remain unclear. The present study investigated the involvement of FK506-binding protein 51 (FKBP51) in NSCLC development and determined the factors associated with FKBP51 modification for NSCLC treatment. Immunohistochemical analysis was performed to analyze FKBP51 expression in human NSCLC tissue samples. Additionally, flow cytometry was performed to observe the apoptosis of FKBP51-overexpressing A549 cells. A dual-luciferase reporter assay was performed to confirm the association between FKBP51 and p53 expression, and western blotting was performed to analyze the effects of FKBP51 on the p53 signaling pathway. Finally, cell viability was measured using a Cell Counting Kit-8 assay. The results suggested FKBP51 downregulation in human lung cancer. Furthermore, apoptosis rates may be increased in FKBP51-overexpressing A549 cells. Moreover, FKBP51 promoted p53 expression and subsequent p53 signaling pathway activation. These results indicated that FKBP51 promoted A549 cell apoptosis via the p53 signaling pathway. Additionally, FKBP51 enhanced the sensitivity of A549 cells to cisplatin. Collectively, these data suggested that FKBP51 could serve as a biomarker for human lung cancer and can thus be tailored for incorporation into NSCLC therapy in the future.

14.
Curr Mol Med ; 20(4): 318-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31749426

RESUMEN

BACKGROUND: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. OBJECTIVE: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. METHODS: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p- group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes-including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin-were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. RESULTS: After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p- group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. CONCLUSION: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Cordón Umbilical/citología , Biomarcadores/metabolismo , Proliferación Celular , Separación Celular , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Organogénesis/genética , Células Madre Pluripotentes/metabolismo , Transcripción Genética , Troponina T/metabolismo , Regulación hacia Arriba
15.
Curr Mol Med ; 20(4): 299-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31663468

RESUMEN

BACKGROUND: Previously, we first identified the human tripartite motifcontaining protein 45 (TRIM45) acts as a novel transcriptional repressor in mitogenactivated protein kinase (MAPK) signaling pathway. After that, the inhibitory role of TRIM45 in the development of tumor was gradually unveiled. However, the function of TRIM45 in the tumorigenesis of lung cancer has not been characterized. METHODS AND RESULTS: In this study, we found that TRIM45 was up-regulated in earlystage human non-small-cell lung cancer (NSCLC) tissues. Overexpression of TRIM45 in lung cancer cells induces G1 arrest and promotes apoptosis, which accompanied by upregulated expression of RB, p16, p53, p27Kip1, and Caspase3 and down-regulated expression of CyclinE1 and CyclinE2. Further detection of the expression of the molecules in the MAPK signaling pathway revealed that overexpression of TRIM45 in lung cancer cells promotes phosphorylated p38 (p-p38) activation and inhibits phosphorylated ERK (p-ERK) activation. In accordance with this, p-p38 is increased while p-ERK is decreased in lung cancer tissues. CONCLUSION: These findings indicate that TRIM45 plays an inhibitory role in the tumorigenesis of lung cancer. High-level expression of TRIM45 in lung cancer tissue may promote cell apoptosis by activating p38 signal and inhibit proliferation by down-regulating p-ERK, which provides a new clue for understanding the tumorigenesis of lung cancer.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Represoras/metabolismo , Células A549 , Apoptosis/genética , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Puntos de Control del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Regulación hacia Arriba/genética
16.
Genet Test Mol Biomarkers ; 23(9): 601-609, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31386585

RESUMEN

Background: Tetralogy of Fallot (TOF) accounts for ∼10% of congenital heart disease cases. The blood vessel epicardial substance (BVES) gene has been reported to play a role in the function of adult hearts. However, whether allelic variants in BVES contribute to the risk of TOF and its possible mechanism remains unknown. Methods: The open reading frame of the BVES gene was sequenced using samples from 146 TOF patients and 100 unrelated healthy controls. qRT-PCR and western blot assays were used to confirm the expression of mutated BVES variants in the TOF samples. The online software Polyphen2 and SIFT were used to predict the deleterious effects of the observed allelic variants. The effects of these allelic variants on the transcriptional activities of genes were examined using dual-fluorescence reporter assays. Results: We genotyped four single nucleotide polymorphisms (SNPs) in the BVES gene from each of the 146 TOF patients. Among them, the minor allelic frequencies of c.385C>T (p.R129W) were 0.035% in TOF, but ∼0.025% in 100 controls and the Chinese Millionome Database. This allelic variant was predicted to be a potentially harmful alteration by the Polyphen2 and SIFT softwares. qRT-PCR and western blot analyses indicated that the expression of BVES in the six right ventricular outflow tract samples with the c.385C>T allelic variant was significantly downregulated. A dual-fluorescence reporter system showed that the c.385C>T allelic variant significantly decreased the transcriptional activity of the BVES gene and also decreased transcription from the GATA4 and NKX2.5 promoters. Conclusions: c.385C>T (p.R129W) is a functional SNP of the BVES gene that reduces the transcriptional activity of BVES in vitro and in vivo in TOF tissues. This subsequently affects the transcriptional activities of GATA4 and NKX2.5 related to TOF. These findings suggest that c.385C>T may be associated with the risk of TOF in the Han Chinese population.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas Musculares/genética , Tetralogía de Fallot/genética , Alelos , Pueblo Asiatico/genética , Moléculas de Adhesión Celular/metabolismo , China/etnología , Factor de Transcripción GATA4/metabolismo , Genotipo , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Proteínas Musculares/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Análisis de Secuencia de ADN/métodos
17.
Curr Mol Med ; 18(7): 448-458, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30539698

RESUMEN

BACKGROUND: Transforming growth factor-ß (TGF-ß)/nodal signaling is involved in early embryonic patterning in vertebrates. Nodal modulator (Nomo, also called pM5) is a negative regulator of nodal signaling. Currently, the role of nomo gene in cartilage development in vertebrates remains unknown. METHODS: Nomo mutants were generated in a knockout model of zebrafish by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) targeting of the fibronectin type III domain. The expression of related genes, which are critical for chondrogenesis, was analyzed by whole-mount in situ hybridization and qRT-PCR. Whole-mount alcian staining was performed to analyze the cartilage structure. RESULTS: nomo is highly expressed in various tissues including the cartilage. We successfully constructed a zebrafish nomo knockout model. nomo homozygous mutants exhibited varying degrees of hypoplasia and dysmorphism on 4 and 5 dpf, which is similar to chondrodysplasia in humans. The key genes of cartilage and skeletal development, including sox9a, sox9b, dlx1a, dlx2a, osx, col10a1, and col11a2 were all downregulated in nomo mutants compared with the wildtype. CONCLUSION: The nomo gene positively regulates the expression of the master regulator and other key development genes involved in bone formation and cartilage development and it is essential for cartilage development in zebrafish.


Asunto(s)
Animales Modificados Genéticamente , Cartílago , Condrogénesis/genética , Proteínas de la Membrana/deficiencia , Osteocondrodisplasias , Proteínas de Pez Cebra/deficiencia , Pez Cebra , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Cartílago/metabolismo , Cartílago/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Pez Cebra/genética , Pez Cebra/metabolismo
19.
Int J Cardiol ; 214: 246-53, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27077543

RESUMEN

BACKGROUND: CXXC-type zinc-finger protein CXXC5 has been reported to be associated with the development of cardiovascular disease. Recently, through signaling pathway screening we found that CXXC5 activated Tgfß and myocardial differentiation signaling pathways simultaneously. Although the physiological and pathological function of CXXC5 in many organs has been well elucidated, its function in heart remains unclear. METHODS AND RESULTS: Here, we found that zebrafish CXXC5 and SMAD were interacting through ZF-CXXC and MH1 domain. Over-expression of CXXC5 in cardiomyocyte increased the luciferase report activity of Tgfß signaling pathway. Spatiotemporal expression profile of cxxc5 showed that it consistently expressed during cardiogenesis. Knockdown of cxxc5 in zebrafish displayed looping defects, cardiac dysplasia, pericardial edema, and decreased contraction ability, accompanied with down-regulation of members referring to cardiac looping downstream genes of Tgfß signaling pathway, such as nkx2.5, hand2, and has2. Co-injection of hand2 mRNA with cxxc5 morpholino rescued the cardiac looping detects. CONCLUSION: Our study is the first to provide an in vivo evidence for cxxc5 regulating heart development and cardiac looping via Tgfß related signaling pathway. This finding suggested that CXXC5 may serve as a possible marker that has potential diagnostic and prognostic value in fetus with congenital heart disease.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/química , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Unión Proteica , Ratas , Transducción de Señal , Proteínas Smad/química , Proteínas de Pez Cebra/química
20.
PLoS One ; 11(1): e0146468, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26799706

RESUMEN

Previous studies have demonstrated that Smyd1 plays a critical role in cardiomyocyte differentiation, cardiac morphogenesis and myofibril organization. In this study, we uncovered a novel function of Smyd1 in the regulation of endothelial cells (ECs). Our data showed that Smyd1 is expressed in vascular endothelial cells, and knockdown of SMYD1 in endothelial cells impairs EC migration and tube formation. Furthermore, Co-IP and GST pull-down assays demonstrated that SMYD1 is associated with the Serum Response Factor (SRF). EMSA assays further showed that SMYD1 forms a complex with SRF and enhances SRF DNA binding activity. Our studies indicate that SMYD1 serves as an SRF-interacting protein, enhances SRF DNA binding activity, and is required for EC migration and tube formation to regulate angiogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Morfogénesis/genética , Desarrollo de Músculos/genética , Proteínas Musculares/metabolismo , Neovascularización Fisiológica/fisiología , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas Musculares/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...