Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(28): e2309932, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769665

RESUMEN

Grayscale digital light processing (DLP) printing is a simple yet effective way to realize the variation of material properties by tuning the grayscale value. However, there is a lack of available design methods for grayscale DLP 3D-printed structures due to the complexities arising from the voxel-level grayscale distribution, nonlinear material properties, and intricate structures. Inspired by the dexterous motions of natural organisms, a design and fabrication framework for grayscale DLP-printed soft robots is developed by combining a grayscale-dependent hyperelastic constitutive model and a voxel-based finite-element model. The constitutive model establishes the relationship between the projected grayscale value and the nonlinear mechanical properties, while the voxel-based finite-element model enables fast and efficient calculation of the mechanical performances with arbitrarily distributed material properties. A multiphysics modeling and experimental method is developed to validate the homogenization assumption of the degree of conversion (DoC) variation in a single voxel. The design framework is used to design structures with reduced stress concentration and programmable multimodal motions. This work paves the way for integrated design and fabrication of functional structures using grayscale DLP 3D printing.

2.
PLoS Comput Biol ; 19(6): e1011219, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37315061

RESUMEN

In the normal lung, the dominant cable is an elastic "line element" composed of elastin fibers bound to a protein scaffold. The cable line element maintains alveolar geometry by balancing surface forces within the alveolus and changes in lung volume with exercise. Recent work in the postnatal rat lung has suggested that the process of cable development is self-organized in the extracellular matrix. Early in postnatal development, a blanket of tropoelastin (TE) spheres appear in the primitive lung. Within 7 to 10 days, the TE spheres are incorporated into a distributed protein scaffold creating the mature cable line element. To study the process of extracellular assembly, we used cellular automata (CA) simulations. CA simulations demonstrated that the intermediate step of tropoelastin self-aggregation into TE spheres enhanced the efficiency of cable formation more than 5-fold. Similarly, the rate of tropoelastin production had a direct impact on the efficiency of scaffold binding. The binding affinity of the tropoelastin to the protein scaffold, potentially reflecting heritable traits, also had a significant impact on cable development. In contrast, the spatial distribution of TE monomer production, increased Brownian motion and variations in scaffold geometry did not significantly impact simulations of cable development. We conclude that CA simulations are useful in exploring the impact of concentration, geometry, and movement on the fundamental process of elastogenesis.


Asunto(s)
Pulmón , Tropoelastina , Animales , Ratas , Tropoelastina/metabolismo , Pulmón/metabolismo , Matriz Extracelular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA