Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(8): 2255-2261, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38381005

RESUMEN

Defects in lead halide perovskites (LHPs) may have a significant impact on charge carrier separation, but the roles of the defects are not fully understood. Here, using aberration-corrected scanning transmission electron microscopy (STEM), different types of antiphase boundaries (APBs) are discovered in CsPbBr3 platelets. APBs with a displacement vector of 1/4[111] are characterized by double layers of CsBr layers at the (110) or (001) planes, while APBs at the (112) planes are formed through edge sharing of PbBr6 ̵octahedra. Significant lattice distortions are determined at (001) and (110) APBs on the basis of quantitative analyses of STEM images. Density functional theory calculations demonstrate that all three types of APBs can induce band offsets at their valence bands and conduction bands. The APBs are intended to promote the separation of photogenerated charge carriers in LHPs. These findings provide a crystal engineering technique for enhancing the optoelectronic properties of LHPs by controlling defects.

2.
Nanoscale ; 15(46): 18678-18686, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37933460

RESUMEN

Spontaneous valley polarization, resulting from the magnetic proximity effect, holds tremendous potential for information processing and storage. This effect is highly sensitive to the interfacial electronic properties, encompassing both charge transitions and spin configurations. In this study, we propose the manipulation of valley splitting by leveraging the tunable magnetic proximity effect through sliding an inversion-symmetric antiferromagnetic (AFM-I) monolayer within a TMD/AFM-I/TMD heterostructure. The presence of the antiferromagnetic monolayer enhances the robustness of the magnetic order during interlayer sliding. Notably, we demonstrate that the polarized stacking of the heterostructure enables the generation of intrinsic out-of-plane and in-plane electric polarization. Intriguingly, interlayer sliding not only reverses the out-of-plane and in-plane electric polarization but also alters the layer-resolved valley splitting, thereby contributing to the emergence of the anomalous valley Hall effect and the layer Hall effect. In addition, the manipulation of valleys remains consistent with both the valley optical selection rules and the intra/interlayer emission energy, which are contingent upon the interlayer sliding. The findings of this work hold promise for potential applications in the field of valleytronics.

3.
J Phys Chem Lett ; 14(3): 798-808, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36652698

RESUMEN

Using first-principles calculations in combination with nonadiabatic molecular dynamics (NAMD), we propose novel heterostructures of carbon nitride (C7N6) and the Janus GaSnPS monolayer as promising direct Z-scheme photocatalysts for solar-driven overall water splitting. The out-of-plane electric field due to the electric polarization which is dependent on the stacking pattern alters the band alignment and catalytic activity of the heterostructures. The relatively strong interfacial nonadiabatic coupling and long quantum coherence time accelerate the interlayer carrier recombination, enabling a direct Z-scheme photocatalytic mechanism. More importantly, the redox ability of the remanent photogenerated carriers in the Z scheme is strong enough to trigger both the hydrogen evolution reaction (HER) and oxygen reduction reaction (OER) simultaneously without the help of sacrificial agents. Our work reveals a fundamental understanding of ultrafast charge carrier dynamics at vdW heterointerfaces as well as new design prospects for highly efficient direct Z-scheme photocatalysts.

4.
J Phys Chem Lett ; 13(40): 9363-9371, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36190244

RESUMEN

Black phosphorus (BP) has received increasing interest as a promising photocatalyst for water splitting. Nevertheless, exploring the underlying hydrogen evolution reaction (HER) mechanism and improving the water oxidizing ability remains an urgent task. Here, using first-principles calculations, we uncover the role of point defects in improving the HER activity of BP photocatalysts. We demonstrate that the defective phosphorene can be effectively activated by the photoinduced electrons under solar light, exhibiting high HER catalytic activity in a broad pH range (0-10). Besides, we propose that the direct Z-scheme in the defective BP/SnSe2 heterobilayer is quite feasible for photocatalytic overall water splitting. This mechanism could be further verified based on the excited state dynamics method. The role of point defects in the photocatalytic mechanism provides useful insights for the development of BP photocatalysts.

5.
J Phys Chem Lett ; 13(31): 7206-7212, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35912980

RESUMEN

Grain boundaries (GBs) have a profound impact on mechanical, chemical, and physical properties of polycrystalline materials. Comprehension of atomic and electronic structures of different GBs in materials can help to understand their impact on materials' properties. Here, with aberration-corrected scanning transmission electron microscopy (STEM), the atomic structure of a 90° twist GB s in CsPbBr3 is determined, and its impact on electron-hole pair separation is predicted. The 90° twist GB has a coherent interface and the same chemical composition as the bulk except for the lattice twist. Density functional theory (DFT) calculation results indicate that the twist GB has an electronic structure similar to that of the bulk CsPbBr3. An electronic potential at the GBs enhances the separation of photogenerated carriers and promotes the motion of electrons across the GBs. These results extend the understanding of atomic and electronic structure of GBs in halide perovskites and propose a potential strategy to eliminate the influence of GBs by GB engineering.

6.
RSC Adv ; 12(27): 17029-17035, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35755579

RESUMEN

As it is a promising clean energy source, the production and storage of hydrogen are crucial techniques. Here, based on first-principles calculations, we proposed an integral strategy for the production and storage of hydrogen in carbon nanotubes via photocatalytic processes. We considered a core-shell structure formed by placing a carbon nitride nanowire inside a carbon nanotube to achieve this goal. Photo-generated holes on the carbon nanotube surface promote water splitting. Driven by intrinsic electrostatic field in the core-shell structures, protons produced by water splitting penetrate the carbon nanotube and react with photo-generated electrons on the carbon nitride nanowire to produce hydrogen molecules in the carbon nanotube. Because carbon nanotubes have high hydrogen storage capacity, this core-shell structure can serve as a candidate system for photocatalytic water splitting and safe hydrogen storage.

7.
ACS Appl Mater Interfaces ; 13(29): 34486-34494, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34282882

RESUMEN

Photocatalytic CO2 conversion into reproducible chemical fuels (e.g., CO, CH3OH, or CH4) provides a promising scheme to solve the increasing environmental problems and energy demands simultaneously. However, the efficiency is severely restricted by the high overpotential of the CO2 reduction reaction (CO2RR) and rapid recombination of photoexcited carriers. Here, we propose that a novel type-II photocatalytic mechanism based on two-dimensional (2D) ferroelectric multilayers would be ideal for addressing these issues. Using density-functional theory and nonadiabatic molecular dynamics calculations, we find that the ferroelectric CuInP2S6 bilayers exhibit a staggered band structure induced by the vertical intrinsic electric fields. Different from the traditional type-II band alignment, the unique structure of the CuInP2S6 bilayer not only effectively suppresses the recombination of photogenerated electron-hole (e-h) pairs but also produces a sufficient photovoltage to drive the CO2RR. The predicted recombination time of photogenerated e-h pairs, 1.03 ns, is much longer than the transferring times of photoinduced electrons and holes, 5.45 and 0.27 ps, respectively. Moreover, the overpotential of the CO2RR will decrease by substituting an S atom with a Cu atom, making the redox reaction proceed spontaneously under solar radiation. The solar-to-fuel efficiency with an upper limit of 8.40% is achieved in the CuInP2S6 bilayer and can be further improved to 32.57% for the CuInP2S6 five-layer. Our results indicate that this novel type-II photocatalytic mechanism would be a promising way to achieve highly efficient photocatalytic CO2 conversion based on the 2D ferroelectric multilayers.

8.
Nanoscale Adv ; 3(15): 4554-4560, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36133463

RESUMEN

Two-dimensional (2D) auxetic materials with exceptional negative Poisson's ratios (NPR) are drawing increasing interest due to their potential use in medicine, fasteners, tougher composites and many other applications. Improving the auxetic performance of 2D materials is currently crucial. Here, using first-principles calculations, we demonstrated giant in-plane NPRs in MX monolayers (M = Al, Ga, In, Zn, Cd; X = P, As, Sb, S, Se, Te) with a unique V-shaped configuration. Our calculations showed that GaP, GaAs, GaSb, ZnS and ZnTe monolayers exhibit exceptional all-angle in-plane NPRs. Remarkably, the AlP monolayer possesses a giant NPR of -1.779, by far the largest NPR in 2D materials. The NPRs of these MX monolayers are correlated to the highly anisotropic features of the V-shaped geometry. The exotic mechanical properties of the V-shaped MX monolayers provide a new family of 2D auxetic materials, as well as a useful guidance for tuning the NPR of 2D materials.

9.
Phys Chem Chem Phys ; 22(35): 20061-20068, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32936175

RESUMEN

The high carrier mobility, porous configurations and tunable electronic structures of two-dimensional (2D) carbon materials hold great promise in energy conversion and storage. However, few of them are capable of photocatalytic overall water splitting. Here, by means of first-principles calculations within the quasi-particle approximation and the Bethe-Salpeter equation, we demonstrated a unique framework of triphenylenes (sp2) and acetylenic linkages (sp), namely triphenyldiyne (TDY) that has the electronic band structure suitable for photocatalytic overall water splitting along with pronounced optical absorbance in visible light. The redox ability of its photogenerated electrons is high enough to drive the hydrogen evolution reaction (HER). Through Ni doping with TDY, its overpotential for the oxygen evolution reaction (OER) can be reduced to match the redox ability of its photogenerated holes, enabling the photocatalytic overall water splitting in sunlight without the need of sacrificial reagents. This work offers not only a low-cost, earth-abundant and environmental-friendly photocatalyst, but also a promising strategy for designing highly efficient photocatalysts for overall water splitting.

10.
Nanoscale ; 12(1): 306-315, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31825061

RESUMEN

As a promising means of renewable energy storage, the production of molecular hydrogen and oxygen from photocatalytic water splitting has gained increasing interest. The optimal photocatalyst for water splitting should have high solar energy conversion efficiency and strong photocatalytic redox ability to drive the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, few photocatalysts have been reported to fulfil these two contradictive requirements. Here, we demonstrated from first-principles calculations that the recently synthesized two-dimensional carbon nitride (C3N5) multilayers can serve as promising candidates to reach this goal. The intrinsic electric field which is more pronounced in the multilayers alters the band alignment of the photocatalysts, making the HER and OER be driven solely by the photogenerated carriers. The thickness-dependent electronic band gap (2.95-2.16 eV) along with the high carrier mobility broadens the energy range of light absorption and promotes carrier separation and transfer, leading to high solar energy conversion efficiency. Our computational results offer not only low-cost, Earth-abundant and environmentally friendly photocatalysts but also a promising strategy for the design of photocatalysts for highly efficient overall water splitting without using sacrificial reagents.

11.
Sci Bull (Beijing) ; 65(12): 995-1002, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659028

RESUMEN

Multifunctional catalysts that integrate high efficiency hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalytic activity in a single material are attractive for unitized regenerative fuel cells and overall water splitting technologies. As the best-known HER and ORR electrocatalysts, Pt and its alloys have only moderate OER activity. Ruthenium and iridium oxides exhibit the highest OER activities but not as active as Pt for HER and ORR. Here, we proposed a general principle for achieving trifunctional electrocatalysis for three reactions in a single material. Using the newly-synthesized pyrazine-modified graphdiyne (PR-GDY) as an example, we demonstrated that the synergistic effect of the pyridinic nitrogen and anchored transition-metal (TM) single atoms renders highly-efficient HER/OER/ORR trifunctional electrocatalytic activity. For the Ni-doped PR-GDY, the overpotentials for HER, OER and ORR can be respectively as low as -0.05, 0.29 and 0.38 V, which are comparable or even superior to the best-known single-functional and bi-functional precious electrocatalysts. These computational results offer not only a promising trifunctional electrocatalyst but also a strategy for the design of multifunctional electrocatalysts.

12.
Sci Bull (Beijing) ; 65(1): 27-34, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659065

RESUMEN

Two-dimensional (2D) van der Waals materials have been widely adopted as photocatalysts for water splitting, but the energy conversion efficiency remains low. On the basis of first-principles calculations, we demonstrate that the 2D Janus group-III chalcogenide multilayers: InGaXY, M2XY and InGaX2 (M = In/Ga; X, Y = S/Se/Te), are promising photocatalysts for highly-efficient overall water splitting. The intrinsic electric field enhances the spatial separations of photogenerated carriers and alters the band alignment, which is more pronounced compared with the Janus monolayers. High solar-to-hydrogen (STH) efficiency with the upper limit of 38.5% was predicted in the Janus multilayers. More excitingly, the Ga vacancy of InGaSSe bilayer effectively lowers the overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) to the levels provided solely by the photogenerated carriers. Our theoretical results suggest that the 2D Janus group-III chalcogenide multilayers could be utilized as highly efficient photocatalysts for overall water splitting without the needs of sacrificial reagents.

13.
Nanoscale ; 11(31): 14836-14843, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31355831

RESUMEN

Spontaneous full photocatalytic water splitting into hydrogen and oxygen under visible light irradiation without the need for sacrificial agents is a challenging task, because suitable band gaps, low overpotentials for both half-reactions and spatially-separated catalytic sites should be fulfilled simultaneously in a photocatalytic system. Here, we propose a promising strategy to achieve this goal by constructing van der Waals (vdW) heterostructures of two-dimensional (2D) materials. Using first-principles calculations, we predict two promising photocatalysts, MoSe2/SnSe2 and WSe2/SnSe2 heterostructures, with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) taking place separately on the MoSe2 (WSe2) and SnSe2 layers. More excitingly, the Se-vacancy of the MoSe2 (WSe2) monolayer effectively lowers the HER overpotential, making the catalytic reactions occur spontaneously under the potentials solely provided by the photo-generated electrons and holes in pure water. The unique band alignment of these hetero-structured photocatalysts leads to high solar-to-hydrogen (STH) energy conversion efficiencies up to 10.5%, which is quite promising for commercial applications. This work opens up an avenue for the design of highly-efficient photocatalysts for full water splitting.

14.
Phys Chem Chem Phys ; 20(16): 11369-11377, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29644364

RESUMEN

Using first-principles calculations, we show that the recently synthesized two-dimensional (2D) van der Waals layered material indium selenide (InSe) nanosheets can serve as a suitable substrate for silicene and germanene, which form commensurate and stable silicene/InSe (Si/InSe) and germanene/InSe (Ge/InSe) heterolayers (HLs). The buckled honeycomb geometries and Dirac-cone-like band structures of silicene and germanene are well preserved in these HLs. The interaction between silicene (or germanene) and the InSe substrate opens up a band gap of 141 meV (or 149 meV) at the Dirac points, while electron effective masses (EEM) remain as small as 0.059 and 0.067 times the free-electron mass (m0). The band gap and the EEM of the HLs can be further modulated effectively by applying an external electric field or strain. These features are attributed to the built-in electric field due to the interlayer charge transfer of the HLs which breaks the equivalence of the two sublattices of silicene and germanene. Multilayer (ML) InSe substrates have also been considered. We also proposed a parallel plate capacitor model to describe the interaction between silicene (or germanene) and the InSe substrate as well as the electronic band structure modification in response to an external field. This work is expected to offer an ideal substrate material for the growth of silicene and germanene and a promising van der Waals (vdW) layered heterostructure for electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA