Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2400059, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684087

RESUMEN

Materials that can provide reliable electromagnetic interference (EMI) shielding in highly oxidative atmosphere at elevated temperature are indispensable in the fast-developing aerospace field. However, most of conductor-type EMI shielding materials such as metals can hardly withstand the high-temperature oxidation, while the conventional dielectric-type materials cannot offer sufficient shielding efficiency in gigahertz (GHz) frequencies. Here, a highly deficient medium-entropy (ME) perovskite ceramic as an efficient EMI shielding material in harsh environment, is demonstrated. The synergistic effect of entropy stabilization and aliovalent substitution on A-site generate abnormally high concentration of Ti and O vacancies that are stable under high-temperature oxidation. Due to the clustering of vacancies, the highly deficient perovskite ceramic exhibits giant complex permittivity and polarization loss in GHz, leading to the specific EMI shielding effectiveness above 30 dB/mm in X-band even after 100 h of annealing at 1000 °C in air. Along with the low thermal conductivity, the aliovalent ME perovskite can serve as a bifunctional shielding material for applications in aircraft engines and reusable rockets.

2.
ACS Appl Mater Interfaces ; 16(4): 4671-4678, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38235651

RESUMEN

Despite the attractive thermoelectric properties in single crystals, the fabrication of high-performance polycrystalline SnSe by a cost-effective strategy remains challenging. In this study, we prepare the undoped SnSe ceramic with remarkable thermoelectric efficiency by the combination of a cold sintering process (CSP) and thermal annealing. The high sintering pressure during CSP induces not only highly oriented grains but also a high concentration of lattice dislocations and stacking faults, which leads to large lattice strain that can shorten the phonon relaxation time. Meanwhile, the thermal annealing breaks the highly resistive SnOx layers at grain boundaries, which improves the electrical conductivity and power factor. In addition, the grain growth during annealing further turns the broken SnOx layers into nanoparticles, which further lowers the thermal conductivity by enhanced scattering. As a result, a peak ZT of 1.3 at 890 K and a high average ZT of 0.69 are achieved in the polycrystalline SnSe, suggesting great potential in mid-temperature power generation. This work may pave the way for the mass production of SnSe-based ceramics for thermoelectric devices.

3.
ACS Appl Mater Interfaces ; 14(33): 37937-37946, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35960808

RESUMEN

For years, most of the advanced polycrystalline thermoelectric (TE) materials are fabricated by spark plasma sintering (SPS) in the research field, mainly because of its high processing efficiency. However, issues like high energy consumption and an expensive apparatus have prevented the application of this strategy in industry. Herein, taking PbTe0.94Se0.06 (PTS) as a typical n-type mid-temperature material, we demonstrate that the cold sintering process (CSP) can serve as a green and cost-effective technology for preparing advanced TE materials. By selecting the solvothermal precursors as liquid sintering aids, the CSP-densified PTS shows a maximum figure of merit of 0.96 at 700 K, which is on par with, if not better than, the reported similar materials prepared by SPS. This remarkable performance is ascribed to the distinct densification procedure in the CSP: (1) the ultralow temperature alleviates the precipitation of Pb, which preserves the high carrier concentration of PTS; (2) the transient liquid phase forms intimate grain boundaries comparable to the high-temperature sintered one, leading to a high carrier mobility; (3) the dissolution-precipitation process greatly restrains the coarsening of precipitates, which effectively suppresses the bipolar effect and lattice thermal conductivity due to enhanced scattering. We believe that these results can greatly encourage the application of CSP in the future development of TE materials.

4.
Adv Sci (Weinh) ; 9(4): e2104163, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34898048

RESUMEN

The 2D titanium carbide MXene with both extraordinary electromagnetic attenuation and elastic properties has shown great potential as the building block for constructing mechanically robust microwave absorbing composites (MACs). However, the weak thermal stability has inhibited the successful incorporation of MXene into the inorganic MACs matrix so far. Herein, an ultralow temperature sintering strategy to fabricate a hierarchical aluminosilicate glass composite is demonstrated by using EMT zeolite as starting powder, which can not only endow the composites with high sinterability, but also facilitate the alignment of MXene in the glass matrix. Accordingly, the highly oriented MXene and mesoporous structure can effectively reduce the conduction loss in the out-of-plane direction while maintaining its large polarization loss. Meanwhile, the in situ formed Ni nanoparticles via ion exchange serve as a synergistic modulator to further improve the attenuation capability and impedance matching of composite, resulting in a low reflection loss of -59.5 dB in X band and general values below -20 dB with a low fitting thickness from 4 to 18 GHz. More attractively, such a delicate structure also gives the composite a remarkable fracture strength and contact-damage-resistance, which qualifies the mesoporous glass composite as a structural MACs with a superior comprehensive performance.

5.
ACS Appl Mater Interfaces ; 13(32): 38604-38612, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34369139

RESUMEN

Lithium-sulfur (Li-S) batteries have exhibited tremendous potential among the various secondary batteries benefitting from their large energy density, low expense, and enhanced security. However, the commercial use for Li-S batteries is immensely limited by the insulation of S, noticeable volume expansion from S to Li2S2/Li2S, and the undesired shuttle effect of lithium polysulfides (LiPs). Herein, a composite sulfur host has been prepared by in situ incorporations of cobalt nanoparticles (NPs) into nitrogen-doped mesoporous carbon spheres (Co/N-PCSs) through the composite micelle assembly strategy. The resultant functional Co/N-PCSs not only possess uniform spherical morphology with large open mesopores, high surface area, and pore volume but also have small Co NPs homogeneously inlaid into the pore walls of carbon frameworks. Both the experimental and theoretical calculation results demonstrate that the formed cobalt NPs can efficiently accelerate the lithium-ion diffusion reaction and greatly entrap the soluble intermediate LiPs. Benefiting from the well-designed structure, the Co/N-PCSs@S cathode with a S loading of 73.82 wt % delivers superior electrochemical performance, including long cycling stability (60% for the residual capacity at 1 A g-1 within 300 cycles) and excellent rate performance (∼512 mAh g-1 at 6 A g-1). This design strategy of implanting metal NPs in mesoporous carbon can be inspiring in energy storage applications.

6.
Small ; 17(9): e1904022, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31643131

RESUMEN

Mesoporous materials have drawn more and more attention in the field of biosensors due to their high surface areas, large pore volumes, tunable pore sizes, as well as abundant frameworks. In this review, the progress on mesoporous materials-based biosensors from enzymatic to nonenzymatic are highlighted. First, recent advances on the application of mesoporous materials as supports to stabilize enzymes in enzymatic biosensing technology are summarized. Special emphasis is placed on the effect of pore size, pore structure, and surface functional groups of the support on the immobilization efficiency of enzymes and the biosensing performance. Then, the development of a nonenzymatic strategy that uses the intrinsic property of mesoporous materials (carbon, silica, metals, and composites) to mimic the behavior of enzymes for electrochemical sensing of some biomolecules is discussed. Finally, the challenges and perspective on the future development of biosensors based on mesoporous materials are proposed.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Metales , Dióxido de Silicio
7.
ACS Sens ; 6(2): 355-363, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32449344

RESUMEN

Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS2. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H2 concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS2 substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.


Asunto(s)
Molibdeno , Agua , Electrólitos
8.
Nano Lett ; 21(1): 700-708, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33301324

RESUMEN

The greatest challenge for lithium-sulfur (Li-S) batteries application is the development of cathode hosts to address the low conductivity, huge volume change, and shuttling effect of sulfur or lithium polysulfides (LiPs). Herein, we demonstrate a composite host to circumvent these problems by confining sub-nanometric manganous oxide clusters (MOCs) in nitrogen doped mesoporous carbon nanosheets. The atomic structure of MOCs is well-characterized and optimized via the extended X-ray absorption fine structure analysis and density functional theory (DFT) calculations. Benefiting from the unique design, the assembled Li-S battery displays remarkable electrochemical performances including a high reversible capacity (990 mAh g-1 after 100 cycles at 0.2 A g-1) and a superior cycle life (60% retention over 250 cycles at 2 A g-1). Both the experimental results and DFT calculations demonstrate that the well-dispersed MOCs could significantly promote the chemisorption of LiPs, thus greatly improving the capacity and rate performance.

9.
ACS Appl Mater Interfaces ; 12(47): 52721-52730, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33182996

RESUMEN

The low powder factor (PF) of polycrystalline oxide perovskites induced by the resistive grain boundaries or known as double Schottky barrier (DSB) greatly restricts their thermoelectric performance in application. Here, a general protocol including (i) powder and (ii) bulk reduction in H2/Ar forming gas is demonstrated to break the DSB in La and Nb codoped SrTiO3. While the powder reduction guarantees a high carrier concentration by fully stimulating the donor doping effect, the bulk reduction effectively lowers the DSB by influencing the point defects at grain boundaries, which is proved by the combination of cathode luminescence spectra and energy-dispersive X-ray spectroscopy in transmission electron microscopy. The Hall mobility can approach 10 cm2 V-1 s-1 after two-step reduction, which is similar to the level of single crystals. However, the Seebeck coefficient is not compromised, giving rise to high PF values up to 1.70 mW m-1 K-1 under proper reduction strength. Meanwhile, the reduction process also promotes mild precipitation of Nb nanoparticles, thus effectively lowering the lattice thermal conductivity by scattering phonons. As a result, a remarkable figure of merit reaching 0.4 at 700 K is obtained, which validates the two-step reduction as a reliable strategy toward "electron crystal-phonon glass" behavior in SrTiO3-based perovskites.

10.
Adv Sci (Weinh) ; 7(21): 2002225, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33173744

RESUMEN

Despite the ultrahigh intrinsic strength of multiwalled carbon nanotube (MWCNT), the strengthening effect on ceramic matrix composite remains far from expectation mainly due to the weak load transfer between the reinforcement and ceramic matrix. With the assistance of the in situ pullout test, it is revealed that the liquid-phase sintering (LPS) can serve as a novel strategy to achieve effective load transfer in MWCNT reinforced ceramic matrix composites. The YAlO3 formed liquid phase during spark plasma sintering of SiC composite greatly facilitates radical elastic deformation of MWCNT, leading to highly increased interfacial shear strength (IFSS) as well as interlayer shear resistance (ISR) of nested walls. The liquid phase with superior wettability can even penetrate into the defects of MWCNT, which further increases the ISR of MWCNT. Moreover, the first-principles calculation indicates that the oxygen terminated YAlO3 phase displays much stronger bonding compared with SiC matrix, which is also responsible for the large IFSS in the composite. As a result, as high as 30% improvement of bending strength is achieved in the composite with only 3 wt% MWCNT in comparison to the monolithic ceramic, manifesting the unprecedented strengthening effect of MWCNT assisted by LPS.

11.
Nanoscale ; 12(40): 20811-20819, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33034596

RESUMEN

Porous tungsten oxides (WO3) have been implemented in various application fields including catalysis, energy storage and conversion, and gas sensing. However, the construction of hierarchically ordered porous WO3 nanostructures with highly crystalline frameworks remains a great challenge. Herein, a confined interfacial micelle aggregating assembly approach has been developed for the synthesis of ordered macro-mesoporous WO3 (OMMW) nanostructures using three-dimensional SiO2 photonic crystals (PCs) as nanoreactors for the confined assembly of tungsten precursor and poly(ethylene oxide)-block-polystyrene (PEO-b-PS) template. After the heat treatment and etching processes, the obtained OMMW could achieve hierarchically ordered porous nanostructures with close-packed spherical mesopores (∼34.1 nm), interconnected macro-cavities (∼420 nm), high accessible surface areas (∼78 m2 g-1), and highly crystalline frameworks owing to the protection of dual templates. When OMMW nanostructures were assembled into gas sensors for the detection of H2S, the resulting sensors exhibited excellent comprehensive sensing performance, including a rapid response-recovery kinetics, in addition to high selectivity and long-term stability, which are significantly better than the previously reported WO3-based sensors. This study paves a promising way toward the development of hierarchically ordered porous semiconductors with large and interconnected porous channels for sensing applications.

12.
Adv Sci (Weinh) ; 6(24): 1902008, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871868

RESUMEN

The direct assembly of functional nanoparticles into a highly crystalline mesoporous semiconductor with oriented configurations is challenging but of significance. Herein, an evaporation induced oriented co-assembly strategy is reported to incorporate SnO2 nanocrystals (NCs) into a 3D branched mesoporous TiO2 framework by using poly(ethylene oxide)-block-polystyrene (PEO-b-PS) as the template, SnO2 NCs as the direct tin source, and titanium butoxide (TBOT) as the titania precursor. Owing to the combined properties of ultrasmall particle size (3-5 nm), excellent dispersibility and presence of abundant hydroxyl groups, SnO2 NCs can easily interact with PEO block of the template through hydrogen bonding and co-assemble with hydrolyzed TBOT to form a novel hierarchical branched mesoporous structure (SHMT). After calcination, the obtained composites exhibit a unique 3D flower-like structure, which consists of numerous mesoporous rutile TiO2 branches with uniform cylindrical mesopores (≈9 nm). More importantly, the SnO2 NCs are homogeneously distributed in the mesoporous TiO2 matrix, forming numerous n-n heterojunctions. Due to the unique textual structures, the SHMT-based gas sensors show excellent gas sensing performance with fast response/recovery dynamics, high sensitivity, and selectivity toward ethanol.

13.
ACS Appl Mater Interfaces ; 11(49): 46386-46396, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31721552

RESUMEN

Graphene aerogel (GA) possessing good electrical conductivity and low weight has been widely considered as a promising candidate for high-performance microwave-absorbing (MA) materials. However, simultaneous realization of high reflection loss (RL), low thickness, and light weight remains very challenging for GA because of the trade-off between impedance match and attenuation ability. Herein, through use of (3-aminopropyl)triethoxysilane as a surface modifier and cross-linker, the GA materials with precisely controlled density are fabricated via a unique solvothermal protocol of zero-volume shrinkage. The density-controlled GA (4.5 mg·cm-3) exhibits a remarkable minimum RL (RLmin) of -50 dB at a thickness of 1.14 mm in the K-band, owing to the optimized dielectric properties. Moreover, even higher attenuation ability without sacrificed impedance match is obtained by incorporating magnetic Fe3O4@C microspheres into the density-controlled GA. Superior MA performance involving unprecedented RLmin of -54.0 dB and qualified bandwidth covering 80% of the K-band has been achieved in the superlight Fe3O4@C/GA composite at a thickness less than 1 mm, which is highly desirable for MA material applied in mobile devices.

14.
ACS Appl Mater Interfaces ; 11(25): 22457-22463, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31194506

RESUMEN

Copper sulfide has been regarded as a promising thermoelectric material with relatively high thermoelectric performance and abundant resource. Large-scale synthesis and low-cost production of high-performance thermoelectric materials are keys to widespread application of thermoelectric technology. Here, Cu2- xS particles encapsulated in a thin carbon shell are fabricated by a scalable wet chemical method (19.7 g/batch). The synthesized particles go through the crystal-phase transition from orthorhombic to tetragonal during high-temperature annealing and sintering. After the phase transition, electrical conductivity of this composite (Cu2- xS@C) increases by approximately 50% compared to that of the pure Cu2- xS sample, and can be attibuted to an increase in carrier concentration. Phonon scattering interface formation and superionic phase of Cu2- xS@C results in very low lattice thermal conductivity of 0.22 W m-1 K-1, and maximum thermoelectric figure of merit ( ZT) of 1.04 at 773 K, which is excellent for thermoelectric performance in pure-phase copper sulfide produced via chemical synthesis. This discovery sets the stage for the use of facile wet chemical synthesis methods for large-scale transition-metal chalcogenide thermoelectric material production.

15.
Front Chem ; 7: 266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058141

RESUMEN

Semiconducting metal oxides with abundant active sites are regarded as promising candidates for environmental monitoring and breath analysis because of their excellent gas sensing performance and stability. Herein, mesoporous WO3 nanofibers with a crystalline framework and uniform pore size is successfully synthesized in an aqueous phase using an electrospinning method, with ammonium metatungstate as the tungsten sources, and SiO2 nanoparticles and polyvinylpyrrolidone as the sacrificial templates. The obtained mesoporous WO3 nanofibers exhibit a controllable pore size of 26.3-42.2 nm, specific surface area of 24.1-34.4 m2g-1, and a pore volume of 0.15-0.24 cm3g-1. This unique hierarchical structure, with uniform mesopores and interconnected channels, could facilitate the diffusion and transportation of gas molecules in the framework. Gas sensors, based on mesoporous WO3 nanofibers, exhibit an excellent performance in acetone sensing with a low limit of detection (<1 ppm), short response-recovery time (24 s/27 s), a linear relationship in a broad range, and good selectivity.

16.
ACS Appl Mater Interfaces ; 10(45): 39245-39256, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30346124

RESUMEN

Ceramic composites with good electrical conductivity and high strength that can provide electromagnetic interference (EMI) shielding are highly desirable for the applications in harsh environment. In this study, lightweight, highly conductive, and strong mullite composites incorporated with reduced graphene oxide (rGO) are successfully fabricated by spark plasma sintering at merely 1200 °C using the core-shell structured γ-Al2O3@SiO2 powder as a precursor. The transient viscous sintering induced by the γ-Al2O3@SiO2 precursor not only prohibits the reaction between mullite and rGO by greatly reducing the sintering temperature, but also induces a highly anisotropic structure in the rGO/mullite composite, leading to an extremely high in-plane electrical conductivity (696 S m-1 for only 0.89 vol % of rGO) and magnitude lower cross-plane electrical conductivity in the composites. As a result, very large loss tangent and EMI shielding effectiveness (>32 dB) can be achieved in the whole K band with extremely low rGO loading (less than 1 vol %), which is beneficial to maintain a good mechanical performance in ceramic matrix composites. Accordingly, the rGO/mullite composites show greatly improved strength and toughness when the rGO content is not high, which enables them to be applied as highly efficient EMI shielding materials while providing excellent mechanical performance.

17.
Small ; 13(25)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28509363

RESUMEN

Obtaining bifunctional electrocatalysts with high activity for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is a main hurdle in the application of rechargeable metal-air batteries. Earth-abundant 3d transition metal-based catalysts have been developed for the OER and ORR; however, most of these are based on oxides, whose insulating nature strongly restricts their catalytic performance. This study describes a metallic Ni-Fe nitride/nitrogen-doped graphene hybrid in which 2D Ni-Fe nitride nanoplates are strongly coupled with the graphene support. Electronic structure of the Ni-Fe nitride is changed by hybridizing with the nitrogen-doped graphene. The unique heterostructure of this hybrid catalyst results in very high OER activity with the lowest onset overpotential (150 mV) reported, and good ORR activity comparable to that for commercial Pt/C. The high activity and durability of this bifunctional catalyst are also confirmed in rechargeable zinc-air batteries that are stable for 180 cycles with an overall overpotential of only 0.77 V at 10 mA-2 .

18.
Adv Mater ; 29(48)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28374476

RESUMEN

Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO2 shells offer superior buffering properties compared to crystalline TiO2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes.

19.
Chem Asian J ; 4(12): 1809-1816, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19902450

RESUMEN

Oleic acid stabilized superparamagnetic iron oxide nanoparticles (SPION) were selected as the cores for fabrication of sub-50-nm monodisperse single-loaded SPION@SiO2 core-shell nanostructures. Parameters that influence the formation of SPION@SiO2 in the water-in-oil reverse microemulsion system have been systematically investigated. The sufficiently high concentration of well-dispersed SPION, together with an appropriately low injection rate of tetraethoxysilane, were found to be the keys to efficiently prevent the homogeneous nucleation of silica and obtain a high-quality single-loaded core-shell nanocomposite. A more detailed mechanism for incorporating oleic acid capped inorganic functional nanoparticles into silica is proposed on the basis of previous reports and our new experimental results. Finally, the as-synthesized SPION@SiO2 nanospheres are exploited as an MRI-enhanced contrast agent, and their contrast effect in solution is tested by using a clinical MRI instrument.


Asunto(s)
Compuestos Férricos/química , Angiografía por Resonancia Magnética/métodos , Nanoestructuras/química , Adsorción , Medios de Contraste/química , Dextranos , Óxido Ferrosoférrico , Imagen por Resonancia Magnética , Magnetismo , Nanopartículas de Magnetita , Ácido Oléico/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...