Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Transl Oncol ; 45: 101978, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701650

RESUMEN

OBJECTIVE: This study aimed to investigate TCF19's role in lung cancer development, specifically its involvement in the RAF/MEK/ERK signaling pathway. METHODS: Lung cancer tissue analysis revealed significant TCF19 overexpression. In vitro experiments using A549 and Hop62 cells with TCF19 overexpression demonstrated enhanced cell growth. Transgenic mouse models confirmed TCF19's role in primary tumor development. Transcriptome sequencing identified altered gene expression profiles, linking TCF19 to RAF/MEK/ERK pathway activation. Functional assays elucidated underlying mechanisms, revealing increased phosphorylation of Raf1, MEK1/2, and ERK1/2. Inhibiting RAF1 or ERK through shRaf1 or ERK inhibitor reduced cell cycle-related proteins and inhibited TCF19-overexpressing cell growth. RESULTS: TCF19 was identified as an oncogene in lung carcinoma, specifically impacting the RAF/MEK/ERK pathway. Elevated TCF19 levels in lung cancer suggest targeting TCF19 or its associated pathways as a promising strategy for disease management. CONCLUSION: This study unveils TCF19's oncogenic role in lung cancer, emphasizing its modulation of the RAF/MEK/ERK pathway and presenting a potential therapeutic target for TCF19-overexpressing lung cancers.

2.
Ecotoxicol Environ Saf ; 273: 116079, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377778

RESUMEN

Nicotine, an addictive component of cigarettes, causes cognitive defects, particularly when exposure occurs early in life. However, the exact mechanism through which nicotine causes toxicity and alters synaptic plasticity is still not fully understood. The aim of the current study is to examine how non-coding developmental regulatory RNA impacts the hippocampus of mice offspring whose mothers were exposed to nicotine. Female C57BL/6J mice were given nicotine water from one week before pregnancy until end of lactation. Hippocampal tissue from offspring at 20 days post-birth was used for LncRNA and mRNA microarray analysis. Differential expression of LncRNAs and mRNAs associated with neuronal development were screened and validated, and the CeRNA pathway mediating neuronal synaptic plasticity GM13530/miR-7119-3p/mef2c was predicted using LncBase Predicted v.2. Using protein immunoblotting, Golgi staining and behavioral tests, our findings revealed that nicotine exposure in offspring mice increased hippocampal NMDAR receptor, activated receptor-dependent calcium channels, enhanced the formation of NMDAR/nNOS/PSD95 ternary complexes, increased NO synthesis, mediated p38 activation, induced neuronal excitability toxicity. Furthermore, an epigenetic CeRNA regulatory mechanism was identified, which suppresses Mef2c-mediated synaptic plasticity and leads to modifications in the learning and social behavior of the offspring during adolescence. This study uncovers the way in which maternal nicotine exposure results in neurotoxicity in offspring.


Asunto(s)
Nicotina , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratones , Animales , Femenino , Nicotina/toxicidad , Nicotina/metabolismo , ARN Endógeno Competitivo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Exposición Materna/efectos adversos , Hipocampo/metabolismo
3.
J Headache Pain ; 25(1): 3, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177990

RESUMEN

BACKGROUND: Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS: Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS: Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS: Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.


Asunto(s)
Trastornos Migrañosos , FN-kappa B , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Sensibilización del Sistema Nervioso Central/fisiología , Citocinas/metabolismo , Inflamasomas/efectos adversos , Inflamasomas/metabolismo , Lipopolisacáridos , Microglía/metabolismo , Trastornos Migrañosos/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Nitroglicerina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo
4.
Ultrason Sonochem ; 101: 106709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38043461

RESUMEN

Accumulating evidence has shown that ultrasound exposure combined with microbubbles can enhance cancer therapy. However, the underlying mechanisms at the tissue level have not been fully understood yet. The conventional cell culture in vitro lacks complex structure and interaction, while animal studies cannot provide micron-scale dynamic information. To bridge the gap, we designed and assembled a 3D vascularized microfluidic cancer model, particularly suitable for ultrasound and microbubble involved mechanistic studies. Using this model, we first studied SonoVue microbubble traveling dynamics in 3D tissue structure, then resolved SonoVue microbubble cavitation dynamics in tissue mimicking agarose gels at a frame rate of 0.675 M fps, and finally explored the impacts of ultrasound and microbubbles on cancer cell spheroids. Our results demonstrate that microbubble penetration in agarose gel was enhanced by increasing microbubble concentration, flow rate and decreasing viscosity of the gel, and little affected by mild acoustic radiation force. SonoVue microbubble exhibited larger expansion amplitudes in 2 %(w/v) agarose gels than in water, which can be explained theoretically by the relaxation of the cavitation medium. The immediate impacts of ultrasound and SonoVue microbubbles to cancer cell spheroids in the 3D tissue model included improved cancer cell spheroid penetration in micron-scale and sparse direct permanent cancer cell damage. Our study provides new insights of the mechanisms for ultrasound and microbubble enhanced cancer therapy at the tissue level.


Asunto(s)
Microburbujas , Neoplasias , Animales , Microfluídica , Sefarosa , Geles , Medios de Contraste , Neoplasias/terapia
5.
Pain Physician ; 26(5): E529-E537, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37774190

RESUMEN

BACKGROUND: Patients with persistent somatoform pain disorder (PSPD) are not uncommon. Still, the disease diagnosis relies primarily on structured interviews, with no objective indicators yet available to aid in the diagnosis. This has led to low diagnostic rates and overconsumption of health care resources for the disorder. Although there is a large body of research to improve the diagnosis of the condition, there are currently no objective indicators available for diagnosis. OBJECTIVES: The aim of this study is to investigate the clinical value of infrared thermography (IRT) for diagnosing PSPD. STUDY DESIGN: This is a retrospective study. SETTING: A single academic hospital, outpatient setting. METHODS: The clinical data of patients diagnosed with PSPD in the Pain Department of the First Affiliated Hospital of the Army Medical University from September 2020 to September 2022 were analyzed. The differences in IR thermograms between PSPD patients and healthy controls were analyzed, as well as the relationship between the Hamilton Depression Rating Scale, Hamilton Anxiety Scale, Pittsburgh Sleep Quality Index (PSQI) score, Patient Health Questionnaire-15, and Symptom Check List-90 and the differences in IR thermograms of PSPD patients. RESULTS: The mean squared error, structural similarity measure, different hash, contrast, entropy, inverse variance, and correlation values of the IR thermogram helped to determine PSPD with statistically significant differences (P < 0.05). Inverse variance values were weakly negatively correlated with PSQI scores of PSPD patients (r -0.4721, P < 0.05). LIMITATIONS: This study was limited by its sample size and retrospective observational design. CONCLUSIONS: IRT analysis is a useful objective method in diagnosis of PSPD, which also provides a new line of thought for studying the pathogenesis of PSPD. KEY WORDS: Persistent somatoform pain disorder, PSPD, thermal imaging, infrared thermography, IRT, image texture characteristics, psychometric variables, image analysis.


Asunto(s)
Trastornos Somatomorfos , Termografía , Humanos , Estudios Retrospectivos , Trastornos Somatomorfos/diagnóstico , Dolor
6.
Biosens Bioelectron ; 235: 115367, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37187061

RESUMEN

Elimination of circulating tumor cells (CTCs) in the blood can be an effective therapeutic approach to disrupt metastasis. Here, a strategy is proposed to implement flexible wearable electronics and injectable nanomaterials to disrupt the hematogenous transport of CTCs. A flexible device containing an origami magnetic membrane is used to attract Fe3O4@Au nanoparticles (NPs) that are surface modified with specific aptamers and intravenously injected into blood vessels, forming an invisible hand and fishing line/bait configuration to specifically capture CTCs through bonding with aptamers. Thereafter, thinned flexible AlGaAs LEDs in the device offer an average fluence of 15.75 mW mm-2 at a skin penetration depth of 1.5 mm, causing a rapid rise of temperature to 48 °C in the NPs and triggering CTC death in 10 min. The flexible device has been demonstrated for intravascular isolation and enrichment of CTCs with a capture efficiency of 72.31% after 10 cycles in a simulated blood circulation system based on a prosthetic upper limb. The fusion of nanomaterials and flexible electronics reveals an emerging field that utilizes wearable and flexible stimulators to activate biological effects offered by nanomaterials, leading to improved therapeutical effects and postoperative outcomes of diseases.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoestructuras , Células Neoplásicas Circulantes , Humanos , Oro
7.
Nat Commun ; 14(1): 1247, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871040

RESUMEN

Liver kinase B1 (LKB1) mutation is prevalent and a driver of resistance to immune checkpoint blockade (ICB) therapy for lung adenocarcinoma. Here leveraging single cell RNA sequencing data, we demonstrate that trafficking and adhesion process of activated T cells are defected in genetically engineered Kras-driven mouse model with Lkb1 conditional knockout. LKB1 mutant cancer cells result in marked suppression of intercellular adhesion molecule-1 (ICAM1). Ectopic expression of Icam1 in Lkb1-deficient tumor increases homing and activation of adoptively transferred SIINFEKL-specific CD8+ T cells, reactivates tumor-effector cell interactions and re-sensitises tumors to ICB. Further discovery proves that CDK4/6 inhibitors upregulate ICAM1 transcription by inhibiting phosphorylation of retinoblastoma protein RB in LKB1 deficient cancer cells. Finally, a tailored combination strategy using CDK4/6 inhibitors and anti-PD-1 antibodies promotes ICAM1-triggered immune response in multiple Lkb1-deficient murine models. Our findings renovate that ICAM1 on tumor cells orchestrates anti-tumor immune response, especially for adaptive immunity.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Neoplasias Pulmonares , Animales , Ratones , Linfocitos T CD8-positivos , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Inmunidad Adaptativa
8.
Acta Biomater ; 155: 471-481, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400351

RESUMEN

The inherently dynamic and anisotropic microenvironment of cells imposes not only global and slow physical stimulations on cells but also acute and local perturbations. However, cell mechanical responses to transient subcellular physical signals remain unclear. In this study, acoustically activated targeted microbubbles were used to exert mechanical perturbations to single cells. The cellular contractile force was sensed by elastic micropillar arrays, while the pillar deformations were imaged using brightfield high-speed video microscopy at a frame rate of 1k frames per second for the first 10s and then confocal fluorescence microscopy. Cell mechanical responses are accompanied by cell membrane integrity changes. Both processes are determined by the perturbation strength generated by microbubble volumetric oscillations. The instantaneous cellular traction force relaxation exhibits two distinct patterns, correlated with two cell fates (survival or permanent damage). The mathematical modeling unveils that force-induced actomyosin disassembly leads to gradual traction force relaxation in the first few seconds. The perturbation may also influence the far end subcellular regions from the microbubbles and may propagate into connected cells with attenuations and delays. This study carefully characterizes the cell mechanical responses to local perturbations induced by ultrasound and microbubbles, advancing our understanding of the fundamentals of cell mechano-sensing, -responsiveness, and -transduction. STATEMENT OF SIGNIFICANCE: Subcellular physical perturbations commonly exist but haven't been fully explored yet. The subcellular perturbation generated by ultrasound and targeted microbubbles covers a wide range of strength, from mild, intermediate to intense, providing a broad biomedical relevance. With µm2 spatial sensing ability and up to 1ms temporal resolution, we present spatiotemporal details of the instantaneous cellular contractile force changes followed by attenuated and delayed global responses. The correlation between the cell mechanical responses and cell fates highlights the important role of the instantaneous mechanical responses in the entire cellular reactive processes. Supported by mathematical modeling, our work provides new insights into the dynamics and mechanisms of cell mechanics.


Asunto(s)
Fenómenos Mecánicos , Microburbujas , Ultrasonografía , Membrana Celular , Microscopía
9.
Ther Apher Dial ; 27(1): 83-90, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35670149

RESUMEN

BACKGROUND: This study aimed to analyze the change of serum uric acid (SUA) level post peritoneal dialysis (PD), and the correlation between follow-up SUA and prognosis in patients with PD. METHODS: A total of 1402 patients with PD were evaluated. We graded SUA levels into four grades at baseline, 6 months, 12 months, 18 months, and 24 months post PD, and then compared all-cause mortality and cardiovascular mortality among patients with different SUA grades at each time point. Kaplan-Meier and Cox proportional-hazards regression models were used in the analysis. RESULTS: The SUA levels were 7.97 ± 1.79, 7.12 ± 1.48, 7.05 ± 1.33, 7.01 ± 1.30, and 6.93 ± 1.26 mg/dl at baseline, 6, 12, 18, and 24 months, respectively. There was significant difference on all-cause mortality among patients with PD with different graded SUA levels at 6 months post PD (p = 0.010), and the all-cause mortality was lowest in patients with the grade of 5.65 mg/dl ≤ SUA <7.13 mg/dl. CONCLUSION: SUA level decreased after PD during follow-up. At 6 months post PD, the grade of 5.65 mg/dl ≤ SUA <7.13 mg/dl was appropriate for better patients' survival.


Asunto(s)
Enfermedades Cardiovasculares , Diálisis Peritoneal , Humanos , Ácido Úrico , Estudios de Seguimiento , Pronóstico , Diálisis Peritoneal/efectos adversos , Factores de Riesgo
10.
Cancer Res ; 83(4): 568-581, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36512628

RESUMEN

Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC. SIGNIFICANCE: Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.


Asunto(s)
Inmunidad Adaptativa , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Ratones , Inmunidad Adaptativa/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutaciones Letales Sintéticas/efectos de los fármacos , Microambiente Tumoral , Quinasas de la Proteína-Quinasa Activada por el AMP/genética
11.
Eur J Gastroenterol Hepatol ; 34(12): 1220-1230, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165068

RESUMEN

OBJECTIVE: Irritable bowel syndrome (IBS) is a common functional bowel disorder characterized with visceral hypersensitivity. Previous studies indicated gut microbiota alteration associated short-chain fatty acids (SCFAs) dysregulation is associated with IBS development. The aim of the study is to explore the potential role of microbiota dysbiosis mediated visceral hypersensitivity in postinfectious-IBS (PI-IBS) mouse model. METHODS: Four-week-old NIH mice were randomly allocated into four groups: control mice, PI-IBS mice, PI-IBS mice co-housing with normal mice, and PI-IBS mice were administrated with a cocktail of antibiotics. Trichinella spiralis infection established PI-IBS mouse model. Microbiota in cecal contents and feces were analyzed by 16S rDNA sequencing. SCFAs were detected by gas chromatography. 5-hydroxytryptamine (5-HT) was evaluated by ELISA, and N-methyl-D-aspartate receptors (NMDARs) were examined by western blot. Visceral sensitivity was determined by abdominal withdrawal reflex in response to colorectal distention. RESULTS: Increased SCFAs were observed in cecal contents and feces in PI-IBS mice accompanied with higher 5-HT and NMDAR subunits expressions in ileum and colon. Visceral hypersensitivity was observed in PI-IBS mice compared to control mice. When administrated with antibiotics cocktails and co-housing with normal mice, PI-IBS mice showed decreased SCFAs, 5-HT, NMDAR subunits expressions, and improved visceral hypersensitivity. CONCLUSION: Gut microbiota alteration induced increased SCFAs, 5-HT and NMDAR subunits expressions were associated with visceral hypersensitivity in PI-IBS mice. The critical role of gut microbiota in improving visceral hypersensitivity was further identified by treatment of antibiotics cocktail and co-housing.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Ratones , Humanos , Animales , Serotonina , Disbiosis , Modelos Animales de Enfermedad , Antibacterianos
12.
World J Clin Cases ; 10(13): 4190-4195, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35665124

RESUMEN

BACKGROUND: Paraneoplastic neurological syndrome (PNS) is a rare complication in patients with cancer. PNS can affect the central, peripheral, autonomic nervous system, neuromuscular junction, or muscles and cause various neurological symptoms. Anti-Yo antibody-positive neurological paraneoplasms and anti-Hu antibody-positive neurological paraneoplasms are common, but coexistence of both types has not been described in the literature. CASE SUMMARY: Here we present a rare case of paraneoplastic neuropathy occurring in both breast and lung cancers. A 55-year-old woman was admitted to our hospital with unsteadiness while walking. The patient had a history of breast cancer two years previously. Chest computed tomography revealed a 4.6 cm × 3.6 cm mass in the right lung, which was diagnosed as small-cell lung cancer (SCLC). Blood test was positive for anti-Yo antibodies, and the cerebrospinal fluid was positive for both anti-Yo and anti-Hu antibodies, and the neurological symptoms were considered to be related to the paraneoplasm. The patient was treated with a course of intravenous immunoglobulin, without noticeable improvement. After being discharged from hospital, the patient underwent regular chemotherapy for SCLC and periodic reviews. The patient's neurological symptoms continued to deteriorate at the follow-up visit in April 2021. CONCLUSION: This case suggests the possibility of two types of tumors appearing simultaneously with two paraneoplastic antibodies. The clinical appearance of two or more paraneoplastic tumors requires additional attention.

13.
Brain Sci ; 12(4)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35448041

RESUMEN

Objectives: To investigate the efficacy and safety of an improved ultrasound-guided pulsed radiofrequency (PRF) and nerve block (NB) for patients with pudendal neuralgia (PN). Methods: This retrospective analysis included 88 adults with PN treated in the Pain Department of Southwest Hospital from November 2011 to June 2021, with treatment including NB (n = 40) and PRF (n = 48). The primary outcome variable was pain severity, measured by a standardized visual analog scale (VAS). VAS values were collected at 1, 3, 7, and 14 days and 1 and 3 months after patients were treated with NB or PRF. Results: Compared with patients treated with NB (n = 40) and those treated with PRF (n = 48), no significant difference in pain reduction was observed in the short term (p = 0.739 and 0.981, at 1 and 3 days, respectively); however, in the medium and long term (1 to 3 months), there were statistically significant improvements in the PRF group over the NB group (p < 0.001). Moreover, it was noted that the average pain severity of primary PN and PN due to sacral perineurial cyst was significantly reduced with PRF therapy in the medium and long term when compared to other secondary PNs, including surgery, trauma, and diabetes. Discussion: The ultrasound-guided, improved, and innovative PRF/NB puncture path technique allows for gentler stimulation and faster identification of the pudendal nerve. The PRF technique may provide better treatments for primary PN and sacral perineurial cyst causing secondary PN in the medium and long term.

14.
EMBO Mol Med ; 14(1): e14502, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34898004

RESUMEN

Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares , Oligopéptidos/farmacología , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Animales , Reprogramación Celular , Endorribonucleasas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas
15.
EMBO Mol Med ; 14(1): e14296, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34845836

RESUMEN

More than 60% of nonsmall cell lung cancer (NSCLC) patients show a positive response to the first ALK inhibitor, crizotinib, which has been used as the standard treatment for newly diagnosed patients with ALK rearrangement. However, most patients inevitably develop crizotinib resistance due to acquired secondary mutations in the ALK kinase domain, such as the gatekeeper mutation L1196M and the most refractory mutation, G1202R. Here, we develop XMU-MP-5 as a new-generation ALK inhibitor to overcome crizotinib resistance mutations, including L1196M and G1202R. XMU-MP-5 blocks ALK signaling pathways and inhibits the proliferation of cells harboring either wild-type or mutant EML4-ALK in vitro and suppresses tumor growth in xenograft mouse models in vivo. Structural analysis provides insights into the mode of action of XMU-MP-5. In addition, XMU-MP-5 induces significant regression of lung tumors in two genetically engineered mouse (GEM) models, further demonstrating its pharmacological efficacy and potential for clinical application. These preclinical data support XMU-MP-5 as a novel selective ALK inhibitor with high potency and selectivity. XMU-MP-5 holds great promise as a new therapeutic against clinically relevant secondary ALK mutations.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Theranostics ; 11(13): 6592-6606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995678

RESUMEN

Purpose: Clinical success of cancer therapy is severely limited by drug resistance, attributed in large part to the loss of function of tumor suppressor genes (TSGs). Developing effective strategies to treat those tumors is challenging, but urgently needed in clinic. Experimental Design: MYOCD is a clinically relevant TSG in lung cancer patients. Our in vitro and in vivo data confirm its tumor suppressive function. Further analysis reveals that MYOCD potently inhibits stemness of lung cancer stem cells. Mechanistically, MYOCD localizes to TGFBR2 promoter region and thereby recruits PRMT5/MEP50 complex to epigenetically silence its transcription. Conclusions: NSCLC cells deficient of MYOCD are particularly sensitive to TGFBR kinase inhibitor (TGFBRi). TGFBRi and stemness inhibitor synergize with existing drugs to treat MYOCD deficient lung cancers. Our current work shows that loss of function of MYOCD creates Achilles' heels in lung cancer cells, which might be exploited in clinic.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Nucleares/deficiencia , Receptor Tipo II de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Transactivadores/deficiencia , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación hacia Abajo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Código de Histonas , Humanos , Neoplasias Pulmonares/genética , Metilación , Ratones Transgénicos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Células Madre Neoplásicas/patología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/fisiología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Transducción de Señal , Transactivadores/biosíntesis , Transactivadores/genética , Transactivadores/fisiología , Carga Tumoral
17.
Environ Sci Pollut Res Int ; 28(23): 29379-29393, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33555476

RESUMEN

Large amounts of water-based drilling cuttings (WDC) would be generated during the drilling of shale gas wells, which would occupy land resources and pose significant threat to soil and groundwater environment. The aim of this study was to assess the feasibility of using WDC as a replacement of natural clay to prepare sintered bricks. To determine the optimum preparation condition, the weight loss on ignition, bulk density, water absorption, and compressive strength of the samples were tested. Meanwhile, the environmental performance of the final products was evaluated and micro-analysis was conducted via X-ray diffraction and scanning electron microscopy. The results showed that using WDC to manufacture sintered bricks was technically feasible, but the physical mechanical performance would significantly decrease with the increase of the replacement ratio because of the presence of less silica and excessive calcium. The addition of waste glass and fly ash could promote the generation of molten glassy phase and form the crystal particle bonding structure, which would contribute to the physical-mechanical performance of WDC sintered bricks. Some mineral components in raw materials decomposed and formed minerals with better thermal stability during the sintering process. Under the optimum preparation conditions (mass ratio of WDC: waste glass: fly ash at 40:20:40, sintering temperature at 900 °C, and insulation time at 2 h), the physical-mechanical and environmental performance of WDC sintered bricks could meet the requirements of corresponding Chinese standards and ASTM standards. Thus, in this study, an effective solution to recycle WDC from shale gas development is provided.


Asunto(s)
Gas Natural , Agua , China , Ceniza del Carbón , Reciclaje
18.
J Nanosci Nanotechnol ; 21(2): 824-832, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33183413

RESUMEN

Liver cancer has a high incidence and a poor prognosis, which seriously affects human health. Doxorubicin is one of the chemotherapeutics used in the treatment of tumours, but its severe adverse reactions, especially cardiac toxicity, have limited its clinical application. The nanometre drug delivery system enables drug-loaded nanoparticles to be specifically concentrated in tumour tissues, increasing cell uptake and improving curative effect. Therefore, in this paper, folic acid-modified mesoporous silica nanoparticles (MSN-NH2-PEG-FA) were synthesized by modifying the folic acid on the surface of a drug carrier by using the characteristics of the expression of folic acid receptors, and using it as a drug. The carrier was loaded with antitumor drug doxorubicin hydrochloride (DOX), and a nanometre drug delivery system (MSN-NH2-PEG-FA/DOX) was constructed. At the same time, the near-infrared dye Cy5 was used to mark the mother nucleus to construct fluorescent nanoparticles (MSN-NH2-PEG-FA/DOX-Cy5) for cell and tumour imaging, so as to obtain the abdominal image of liver cancer patients, thereby realizing diagnosis and treatment. The research results show that the carrier can specifically gather in the liver area, reduce the distribution in the heart, reduce the toxic and side effects of drugs, and prolong the survival time of patients. The results of this study provide new ideas for the treatment of liver cancer, and provide a new theoretical basis and experimental basis for the study of inorganic nanomaterials as targeted drug delivery systems.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Supervivencia Celular , Doxorrubicina , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Ácido Fólico , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Dióxido de Silicio
19.
Cancer Manag Res ; 12: 10919-10928, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154671

RESUMEN

BACKGROUND: The purpose of this study was to investigate the feasibility of CT parameters to predict the presence of KRAS mutations in rectal cancer patients. The relationship between the presence of a KRAS mutation and pathological findings was evaluated simultaneously. METHODS: Eighty-nine patients (29 females, 60 males, age 27-90, mean 59.7±12 years) with pathologically proven rectal cancer were enrolled. A KRAS mutation test was completed following surgery. Parameters evaluated on CT included the tumor location, the diameter of the superior rectal vein (SRV) and inferior mesenteric vein (IMV), the presence of calcification, ulceration, lymph node enlargement (LNE), distant metastasis, tumor shape (intraluminal polypoid mass, infiltrative mass, or bulky), circumferential extent (C0-C1/4, C1/4-C1/2, C1/2-C3/4, or C3/4-C1), enhanced pattern (homogeneous or heterogeneous), CT ratio, and the length of the tumor (LOT). Pathological findings included lymphovascular emboli, signet ring cell, peripheral fat interval infiltration, focal ulcer, lymph node metastasis, tumor pathological type, and differentiation extent. The correlations between KRAS status and CT parameters, and KRAS status and pathological findings were investigated. The accuracy of CT characteristics for predicting KRAS mutation was evaluated. RESULTS: A KRAS mutation was detected in 42 cases. On CT image, the diameter of the SRV was significantly increased in the KRAS mutation group compared to in the KRAS wild-type group (4.6±0.9 mm vs 4.2±0.9 mm, p=0.02), and LNE was more likely to occur in the KRAS mutation group (73.3% vs 26.7%, p=0.03). There was no significant difference between the KRAS mutation group and the KRAS wild-type group on the other CT parameters (location, IMV, calcification, ulcer, distant metastasis, tumor shape, enhanced pattern, circumferential extent, CT ratio, and LOT). In the pathological findings, a KRAS mutation was more likely to occur in the middle differentiation group (p=0.03). No significant difference was found between the KRAS mutation group and the KRAS wild-type group in the presence of lymphovascular emboli, signet ring cell, peripheral fat interval infiltration, focal ulcer, lymph node metastasis, and tumor pathological type. With the best cut-off value of 4.07 mm, the AUC of the SRV to predict a KRAS mutation was 0.63 with a sensitivity of 76.2% and a specificity of 48.9%. CONCLUSION: It was feasible to use the diameter of the SRV to predict a KRAS mutation in rectal cancer patients, and LNE also can be regarded as an important clue on preoperative CT images.

20.
Sci Rep ; 10(1): 18253, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106521

RESUMEN

Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies. By applying a short ultrasound pulse to excite single microbubbles tethered to cell membranes, a transient pore on the cell membrane (sonoporation) is generated which allows intracellular loading of dye molecules and influx of Ca2+ into single hESCs. We employ live imaging for continuous visualization of intercellular dye transfer and Ca2+ diffusion in hESC colonies. We quantify cell-cell permeability based on dye diffusion using mass transport models. Our results reveal heterogeneous intercellular connectivity and a variety of spatiotemporal characteristics of intercellular Ca2+ waves in hESC colonies induced by sonoporation of single cells.


Asunto(s)
Comunicación Celular , Colorantes Fluorescentes/metabolismo , Uniones Comunicantes/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Uniones Intercelulares/metabolismo , Sonicación/métodos , Diferenciación Celular , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Microburbujas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...