Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 270: 128670, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33109355

RESUMEN

Neonicotinoid insecticides are neurotoxicants that cause serious environmental pollution and ecosystem risks. In the present study, a nitenpyram-degrading bacterium, Rhodococcus ruber CGMCC 17550, was isolated from a nitenpyram production sewage treatment tank. Liquid chromatography-mass spectrometry analysis revealed R. ruber degraded nitenpyram via a novel hydroxylation pathway to form three different metabolites, one of which was confirmed to hydroxylate nitenpyram at the C3 site of the 6-chlorpyridine cycle by nuclear magnetic resonance analysis. The nitenpyram degradation rate increased as the biomass of resting R. ruber CGMCC 17550 cells increased, reaching 98.37% at an OD600 of 9 in transformation broth containing 100 mg L-1 nitenpyram after 72 h of incubation. Nitenpyram degradation by R. ruber CGMCC 17550 was insensitive to dissolved oxygen levels. Use of glucose, fructose and pyruvate as co-substrates slightly increased nitenpyram degradation. The cytochrome P450 inhibitor 1-aminobenzotriazole strongly inhibited nitenpyram degradation, indicating that P450 enzymes may mediate nitenpyram hydroxylation. Inoculation of R. ruber CGMCC 17550 enhanced nitenpyram degradation in surface water. Additionally, R. ruber cells immobilized by calcium-alginate remediated 87.11% of 100 mg L-1 NIT in 8 d. Genome sequencing analysis confirmed that R. ruber CGMCC 17550 has metabolic diversity and abundant KEGG genes involved in xenobiotics biodegradation and metabolism. These findings demonstrate that R. ruber CGMCC 17550 is capable of unique biodegradation of nitenpyram via the hydroxylation pathway and is a promising bacterium for bioremediation of contaminants.


Asunto(s)
Actinobacteria , Insecticidas , Rhodococcus , Actinomyces , Biodegradación Ambiental , Ecosistema , Hidroxilación , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Agua
2.
J Agric Food Chem ; 68(16): 4579-4587, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32227888

RESUMEN

Sulfoxaflor, a sulfoximine insecticide, could efficiently control many insect pests of sap-feeding. Microbial degradation of sulfoxaflor and the enzymatic mechanism involved have not been studied to date. A bacterial isolate JW2 that transforms sulfoxaflor to X11719474 was isolated and identified as Aminobacter sp. CGMCC 1.17253. Both the recombinant Escherichia coli strain harboring the Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) gene and the pure NHase acquired sulfoxaflor-degrading ability. Aminobacter sp. CGMCC 1.17253 NHase is a typical cobalt-containing NHase content of subunit α, subunit ß, and an accessory protein, and the three-dimensional homology model of NHase was built. Substrate specificity tests showed that NHase catalyzed the conversion of acetamiprid, thiacloprid, indolyl-3-acetonitrile, 3-cyanopyridine, and benzonitrile into their corresponding amides, indicating its broad substrate specificity. This is the first report of the pure bacteria degradation of the sulfoxaflor residual in the environment and reveals the enzymatic mechanism mediated by Aminobacter sp. CGMCC 1.17253.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidroliasas/metabolismo , Insecticidas/metabolismo , Phyllobacteriaceae/metabolismo , Piridinas/metabolismo , Compuestos de Azufre/metabolismo , Proteínas Bacterianas/genética , Biodegradación Ambiental , Hidroliasas/genética , Insecticidas/química , Phyllobacteriaceae/enzimología , Phyllobacteriaceae/genética , Piridinas/química , Compuestos de Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA