Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39139736

RESUMEN

There exists an interplay between borane and a Lewis base in their adducts. However, studies on these adducts so far have mainly focused on the different reactions of B-H bonds with limited attention given to the influence of borane on the chemistry of the Lewis base, except for BF3 and BAr3. Herein, we have synthesized novel borane adducts with pyridine derivatives, Py·B3H7, in which the coordination of B3H7 efficiently achieved the intra-molecular charge transfer. The strong B-N bond in these adducts resulted in the formation of stable dearomatic intermediates of pyridine derivatives, confirmed by 1H and 11B NMR spectroscopy, from which different reactions have transpired to realize C(sp3)-H and C(sp2)-H functionalization under mild conditions. The B3H7 pyridine derivatives are stable and do not dissociate or decompose during the reaction process. The high stability of the B-N bond makes this method a good option for boron-containing drugs with potential for use in boron neutron capture therapy (BNCT).

2.
Small ; : e2401439, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845528

RESUMEN

Solid-state sodium metal batteries have been extensively investigated because of their potential to improve safety, cost-effectiveness, and energy density. The development of such batteries urgently required a solid-state electrolyte with fast Na-ion conduction and favorable interfacial compatibility. Herein, the progress on developing the NaB3H8 solid-state electrolytes is reported, which show a liquid-like ionic conductivity of 0.05 S cm-1 at 56 °C with an activation energy of 0.35 eV after an order-disorder phase transformation, matching or surpassing the best single-anion hydridoborate conductors investigated up to now. The steady polarization voltage and significantly decreased resistance are achieved in the symmetric Na/NaB3H8/Na cell, indicating the great electrochemical stability and favorable interfacial contact with the Na metal of NaB3H8. Furthermore, a Na/NaB3H8/TiS2 battery, the first high-rate (up to 1 C) solid-state sodium metal battery using the single-anion hydridoborate electrolyte, is demonstrated, which exhibits superior rate capability (168.2 mAh g-1 at 0.1 C and 141.2 mAh g-1 at 1 C) and long-term cycling stability (70.9% capacity retention at 1 C after 300 cycles) at 30 °C. This work may present a new possibility to solve the interfacial limitations and find a new group of solid-state electrolytes for high-performance sodium metal batteries.

3.
J Colloid Interface Sci ; 665: 764-771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554466

RESUMEN

The design and synthesis of efficient electrochemical sensors are crucial transformation technologies in electrochemistry. We successfully synthesize a three-dimensional Ni-metal-organic framework (MOF) nanostructured material with a superior architecture using benzimidazole and nickel nitrate as precursors at room temperature which is being applied in glucose electrochemical sensors. The reaction mechanism of M-6 during glucose detection is thoroughly studied using various characterization techniques, such as in situ Raman spectroscopy, in situ ultraviolet-visible spectrophotometry, synchrotron radiography, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The research findings demonstrate that the M-6 material exhibits high sensitivity for glucose detection, with a sensitivity of 2199.88 mA M-1 cm-2. This study provides an important reference for designing more efficient electrochemical reaction systems and optimizing material performance. Furthermore, the superstructural design offers new ideas and possibilities for the development and application of similar materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA