Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Sci Total Environ ; 931: 172797, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38679084

RESUMEN

Human activities have strongly impacted the global climate, and during the last few decades the global average temperature has risen at a rate faster than at any time on record. High latitude lakes in the subarctic and arctic permafrost regions have particularly been vulnerable given the "Arctic amplification" phenomenon and acceleration in warming rate in the northern hemisphere (0.2-0.8 °C/decade). This paper presents a comprehensive overview of the last 30 years of research investigating how subarctic and Arctic lakes respond to climate warming. The review focused on studies where remote sensing technology was used to quantify these responses. The difference between summer lake water temperature and air temperature varied between 1.7 and 5.4 °C in subarctic lakes and 2.4-3.2 °C in Arctic lakes. Overall, the freezing date of lake ice is generally delayed and the date of lake thawing occurs earlier. Lake surface area (4-48.5 %), and abundance in the subarctic and Arctic region have increased significantly due to rising temperature, permafrost thawing, increased precipitation and other localized surface disturbances. However, in recent years, instances of lake shrinkage (between -0.4 % and -40 %) have also been reported, likely due to riparian overflow, groundwater infiltration and lateral drainage. Furthermore, in subarctic and Arctic lakes, climate change and permafrost thawing would release CO2 and CH4, and alter carbon dynamics in impacted lakes through various interconnected processes which could potentially affect the quality of carbon (terrestrial, algae) entering a lake system. The review also highlighted a potential intersection between permafrost melting and public health through human exposure to long-buried viruses. Subarctic and arctic ecosystems' responses to climate change will continue to be an area of intense research interest, and this review has highlighted priority areas for research and how remote sensing technologies can facilitate the pursuit of such a research agenda.

2.
Angew Chem Int Ed Engl ; 63(19): e202401555, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38494454

RESUMEN

The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules-those not engaged in hydration shells or hydrogen-bonding networks-leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O-H bond strengths of water. These insights will help the design of aqueous systems.

3.
Water Res ; 252: 121204, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301526

RESUMEN

Dissolved organic matter (DOM) plays a significant role in aquatic biogeochemical processes and the carbon cycle. As global climate warming continues, it is anticipated that the composition of DOM in lakes will be altered. This could have significant ecological and environmental implications, particularly in frozen ground zones. However, there is limited knowledge regarding the spatial variations and molecular composition of DOM in lakes within various frozen ground zones. In this study, we examined the spatial variations of in-lake DOM both quantitatively, focusing on dissolved organic carbon (DOC), and qualitatively, by evaluating optical properties and conducting molecular characterization using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Lakes in cold regions retained more organic carbon compared to those in warmer regions, the comparison of the mean value of DOC concentration of all sampling sites in the same frozen ground zone showed that the highest mean lake DOC concentration found in the permafrost zone at 21.4 ± 19.3 mg/L. We observed decreasing trends in E2:E3 and MLBL, along with increasing trends in SUVA254 and AImod, along the gradually warming ground. These trends suggest lower molecular weight, reduced aromaticity, and increased molecular lability of in-lake DOM in the permafrost zone compared to other frozen ground zones. Further FT-ICR MS characterization revealed significant molecular-level heterogeneity of DOM, with the lowest abundance of assigned DOM molecular formulas found in lakes within permafrost zones. In all studied zones, the predominant molecular formulas in-lake DOM were compounds consisted by CHO elements, accounting for 40.1 % to 63.1 % of the total. Interestingly, the percentage of CHO exhibited a gradual decline along the warming ground, while there was an increasing trend in nitrogen-containing compounds (CHON%). Meanwhile, a substantial number of polyphenols were identified, likely due to the higher rates of DOM mineralization and the transport of terrestrial DOM derived from vascular plants under the elevated temperature and precipitation conditions in the warming region. In addition, sulfur-containing compounds (CHOS and CHNOS) associated with synthetic surfactants and agal derivatives were consistently detected, and their relative abundances exhibited higher values in seasonal and short-frozen ground zones. This aligns with the increased anthropogenic disturbances to the lake's ecological environment in these two zones. This study reported the first description of in-lake DOM at the molecular level in different frozen ground zones. These findings underline that lakes in the permafrost zone serve as significant hubs for carbon processing. Investigating them may expand our understanding of carbon cycling in inland waters.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Lagos/química , Espectrometría de Masas , China , Carbono
4.
Nat Commun ; 15(1): 1459, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368421

RESUMEN

Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy's superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy.

5.
Environ Sci Ecotechnol ; 19: 100337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38107556

RESUMEN

The spatiotemporal variability of lake partial carbon dioxide pressure (pCO2) introduces uncertainty into CO2 flux estimates at the lake water-air interface. Knowing the variation pattern of pCO2 is important for obtaining accurate global estimation. Here we examine seasonal and trophic variations in lake pCO2 based on 13 field campaigns conducted in Chinese lakes from 2017 to 2021. We found significant seasonal fluctuations in pCO2, with decreasing values as trophic states intensify within the same region. Saline lakes exhibit lower pCO2 levels than freshwater lakes. These pCO2 dynamics result in variable areal CO2 emissions, with lakes exhibiting different trophic states (oligotrophication > mesotrophication > eutrophication) and saline lakes differing from freshwater lakes (-23.1 ± 17.4 vs. 19.3 ± 18.3 mmol m-2 d-1). These spatiotemporal pCO2 variations complicate total CO2 emission estimations. Using area proportions of lakes with varying trophic states and salinity in China, we estimate China's lake CO2 flux at 8.07 Tg C yr-1. In future studies, the importance of accounting for lake salinity, seasonal dynamics, and trophic states must be noticed to enhance the accuracy of large-scale carbon emission estimates from lake ecosystems in the context of climate change.

6.
Front Chem ; 11: 1328081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144887

RESUMEN

Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.

7.
Chem Asian J ; 18(20): e202300668, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37682793

RESUMEN

Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.


Asunto(s)
Protones , Espectrometría Raman , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Espectrometría Raman/métodos
8.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3125-3142, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37622352

RESUMEN

C1 gases including CO, CO2 and CH4, are mainly derived from terrestrial biological activities, industrial waste gas and gasification syngas. Particularly, CO2 and CH4 are two of the most important greenhouse gases contributing to climate change. Bioconversion of C1 gases is not only a promising solution to addressing the problem of waste gases emission, but also a novel route to produce fuels or chemicals. In the past few years, C1-gas-utilizing microorganisms have drawn much attention and a variety of gene-editing technologies have been applied to improve their product yields or to expand product portfolios. This article reviewed the biological characteristics, aerobic or anaerobic metabolic pathways as well as the metabolic products of methanotrophs, autotrophic acetogens, and carboxydotrophic bacteria. In addition, gene-editing technologies (e.g. gene interruption technology using homologous recombination, group Ⅱ intron ClosTron technology, CRISPR/Cas gene editing and phage recombinase-mediated efficient integration of large DNA fragments) and their application in these C1-gas-utilizing microorganisms were also summarized.


Asunto(s)
Gases , Edición Génica , Dióxido de Carbono , Ingeniería Genética , Clonación Molecular
9.
Sci Total Environ ; 899: 166363, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598955

RESUMEN

In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal. In this study, we collected a comprehensive dataset of 640 pairs of in situ measured pigment concentration and the Ocean and Land Color Instrument (OLCI) reflectance from 25 lakes and reservoirs in China during 2020-2022. We then developed a framework consisting of the water optical classification algorithm and three candidate algorithms: baseline height, band ratio, and three-band algorithm. The optical classification method used remote sensing reflectance (Rrs) baseline height in three bands: Rrs(560), Rrs(647) and Rrs(709) to classify the samples into five types, each with a specific spectral shape and water quality character. The improvement of PC estimation accuracy for optically classified waters was shown by comparison with unclassified waters with RMSE = 72.6 µg L-1, MAPE = 80.4 %, especially for the samples with low PC concentration. The results show that the band ratio algorithm has a strong universality, which is suitable for medium turbid and clean water. In addition, the three-band algorithm is only suitable for medium turbid water, and the line height algorithm is only suitable for high PC content water. Furthermore, the five distinguished types with significant differences in the value of the PC/Chla ratio well indicated the risk rank assessment of cyanobacteria. In conclusion, the proposed framework in this paper solved the problem of PC estimation accuracy problem in optically complex waters and provided a new strategy for water quality inversion in inland waters.

10.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569365

RESUMEN

The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Proteínas Fluorescentes Verdes/metabolismo , Dominio Catalítico
11.
Angew Chem Int Ed Engl ; 62(35): e202307212, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37407432

RESUMEN

Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions-25 wt.% LiCl and 62 wt.% H3 PO4 -cooled to -78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl- , ice-like water clusters form, and H⋅⋅⋅Cl- bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules' O-H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O-H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH- and H+ , the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2 O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.

12.
Sci Total Environ ; 892: 164474, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37268137

RESUMEN

Total suspended matter (TSM) as a critical water quality parameter is closely linked with nutrients, micropollutants, and heavy metals threatening the ecological health of aquatic ecosystems. However, the long-term spatiotemporal dynamics of lake TSM in China and their response to natural and anthropogenic factors are rarely explored. In this study, based on Landsat top-of-atmosphere (TOA) reflectance embedded in GEE and in-situ TSM data collecting in the periods 2014-2020, we developed a unified empirical model (R2 = 0.87, RMSE = 10.16 mg/L, and MAPE = 38.37 %) to retrieve the autumn TSM of lakes at national scale. This model exhibited stable and reliable performances through transferability validation and comparative analysis with published TSM models, and was implemented to generate autumn TSM maps for large lakes (≥50 km2) across China during 1990-2020.We found that 78.03 % of large lakes with TSM < 20 mg/L were dominant in 2020 across China, and these lakes were mainly located in the plateau and mountain regions. In the first gradient terrain (FGT) and second gradient terrain (SGT), the number of lakes showing significant (p < 0.05) decreasing TSM trends increased from 1990-2004 to 2004-2020, while those with opposite directions in TSM decreased. Lakes in the third gradient terrain (TGT) exhibited the inverse quantitative change in these two TSM trends compared with the FGT and SGT. A relative contribution analysis at the watershed level indicated that the first two leading factors that control TSM significant change in the FGT were lake area and wind speed, in the SGT were lake area and NDVI, and in the TGT were population and NDVI, respectively. The impacts of anthropogenic factors on lakes are continuing, particularly in eastern China, and more efforts are needed to improve and protect the water environment in the future. Our findings might help water resource managers better grasp the current state of water quality.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Efectos Antropogénicos , Lagos , China
13.
Phys Chem Chem Phys ; 25(23): 15624-15634, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211909

RESUMEN

The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique "double-donor" chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins.


Asunto(s)
Proteínas Fluorescentes Verdes , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Color , Modelos Moleculares , Estructura Terciaria de Proteína , Mutación , Aminoácidos/química , Aminoácidos/genética , Variación Genética
14.
Molecules ; 28(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37110741

RESUMEN

Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of -COH rocking and -C=C, -C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck-Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique "W"-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump-probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics.

15.
J Environ Manage ; 340: 117965, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121003

RESUMEN

Straw return can improve crop yield as well as soil organic carbon (SOC) but may raise the possibility of N2O and CH4 emissions. However, few studies have compared the effects of straw return on the yield, SOC, and N2O emissions of various crops. Which management strategies are the best for balancing yield, SOC, and emission reduction for various crops needs to be clarified. A meta-analysis containing 2269 datasets collected from 369 studies was conducted to investigate the influence of agricultural management strategies on yield increase, soil carbon sequestration, and emission reduction in various crops after the straw return. Analytical results indicated that, on average, straw return increased the yield of rice, wheat, and maize by 5.04%, 8.09%, and 8.71%, respectively. Straw return increased maize N2O emissions by 14.69% but did not significantly affect wheat N2O emissions. Interestingly, straw return reduced the rice N2O emissions by 11.43% but increased the CH4 emissions by 72.01%. The recommended nitrogen application amounts for balancing yield, SOC, and emission reduction varied among the three crops, while the recommended straw return amounts were more than 9000 kg/ha. The optimal tillage and straw return strategies for rice, wheat, and maize were plow tillage combined with incorporation, rotary tillage combined with incorporation, and no-tillage combined with mulching, respectively. A straw return duration of 5-10 years for rice and maize and ≤5 years for wheat was recommended. These findings provide optimal agricultural management strategies after straw return to balance the crop yield, SOC, and emission reduction for China's three major grain crops.


Asunto(s)
Oryza , Suelo , Secuestro de Carbono , Carbono/análisis , Agricultura/métodos , Productos Agrícolas , Zea mays , Triticum/metabolismo , Grano Comestible/química , China , Óxido Nitroso/metabolismo
16.
Biosensors (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36831983

RESUMEN

Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities.


Asunto(s)
Calcio , Protones , Proteínas Fluorescentes Verdes/química , Calcio/química , Proteínas Luminiscentes , Proteína Fluorescente Roja
17.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677656

RESUMEN

Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting ortho-, meta-, and para-substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP-), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional "nanomachines" that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor-acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the meta-substituted compound 3NP or 3NP- exhibits the strongest charge-transfer character with FSRS signatures (e.g., C-N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the ortho-substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications.

18.
Water Res ; 230: 119540, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608522

RESUMEN

The pollution or eutrophication affected by dissolved organic matter (DOM) composition and sources of inland waters had attracted concerns from the public and government in China. Combined with remote sensing techniques, the fluorescent DOM (FDOM) parameters accounted for the important part of optical constituent as chromophoric dissolved organic matter (CDOM) was a useful tool to trace relative DOM sources and assess the trophic states for large-scale regions comprehensively and timely. Here, the objective of this research is to calibrate and validate a general model based on Landsat 8 OLI product embedded in Google Earth Engine (GEE) for deriving humification index (HIX) based on EEMs in lakes across China. The Landsat surface reflectance was matched with 1150 pairs fieldtrip samples and the nine sensitive spectral variables with good correlation with HIX were selected as the inputs in machine learning methods. The calibration of XGBoost model (R2 = 0.86, RMSE = 0.29) outperformed other models. Our results indicated that the entire dataset of HIX has a strong association with Landsat reflectance, yielding low root mean square error between measured and predicted HIX (R2 = 0.81, RMSE = 0.42) for lakes in China. Finally, the optimal XGBoost model was used to calculate the spatial distribution of HIX of 2015 and 2020 in typical lakes selected from the Report on the State of the Ecology and Environment in China. The significant decreasing of HIX from 2015 to 2020 with trophic states showed positive control of humification level of lakes based on the published document of Action plan for prevention and control of water pollution in 2015 of China. The calibrated model would greatly facilitate FDOM monitoring in lakes, and provide indicators for relative DOM sources to evaluate the impact of water protection measures or human disturbance effect from Covid-19 lockdown, and offer the government supervision to improve the water quality management for lake ecosystems.


Asunto(s)
COVID-19 , Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Lagos , Tecnología de Sensores Remotos , Materia Orgánica Disuelta , Ecosistema , Control de Enfermedades Transmisibles , China
19.
Angew Chem Int Ed Engl ; 62(5): e202212209, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36440527

RESUMEN

Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexisting cis- and trans-isomers, holds significance as an archetypal system for LSS emission due to excited-state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time-resolved electronic spectroscopies, aided by quantum calculations, to dissect the cis- and trans-mKeima photocycle from ESPT, isomerization, to ground-state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonated trans-isomer governs LSS emission at 620 nm, while the deprotonated cis-isomer's 520 nm emission is weak due to an ultrafast cis-to-trans isomerization. Complementary spectroscopic techniques as a table-top toolset are thus essential to study photochemistry in physiological environments.


Asunto(s)
Protones , Espectrometría Raman , Proteínas Luminiscentes/química , Espectrometría Raman/métodos , Isomerismo , Proteínas Fluorescentes Verdes/química , Proteína Fluorescente Roja
20.
J Clin Oncol ; 41(10): 1898-1908, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525610

RESUMEN

PURPOSE: To report the efficacy and safety of postoperative adjuvant hepatic arterial infusion chemotherapy (HAIC) with 5-fluorouracil and oxaliplatin (FOLFOX) in hepatocellular carcinoma (HCC) patients with microvascular invasion (MVI). PATIENTS AND METHODS: In this randomized, open-label, multicenter trial, histologically confirmed HCC patients with MVI were randomly assigned (1:1) to receive adjuvant FOLFOX-HAIC (treatment group) or routine follow-up (control group). The primary end point was disease-free survival (DFS) by intention-to-treat (ITT) analysis while secondary end points were overall survival, recurrence rate, and safety. RESULTS: Between June 2016 and August 2021, a total of 315 patients (ITT population) at five centers were randomly assigned to the treatment group (n = 157) or the control group (n = 158). In the ITT population, the median DFS was 20.3 months (95% CI, 10.4 to 30.3) in the treatment group versus 10.0 months (95% CI, 6.8 to 13.2) in the control group (hazard ratio, 0.59; 95% CI, 0.43 to 0.81; P = .001). The overall survival rates at 1 year, 2 years, and 3 years were 93.8% (95% CI, 89.8 to 98.1), 86.4% (95% CI, 80.0 to 93.2), and 80.4% (95% CI, 71.9 to 89.9) for the treatment group and 92.0% (95% CI, 87.6 to 96.7), 86.0% (95% CI, 79.9 to 92.6), and 74.9% (95% CI, 65.5 to 85.7) for the control group (hazard ratio, 0.64; 95% CI, 0.36 to 1.14; P = .130), respectively. The recurrence rates were 40.1% (63/157) in the treatment group and 55.7% (88/158) in the control group. Majority of the adverse events were grade 0-1 (83.8%), with no treatment-related death in both groups. CONCLUSION: Postoperative adjuvant HAIC with FOLFOX significantly improved the DFS benefits with acceptable toxicities in HCC patients with MVI.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Resultado del Tratamiento , Fluorouracilo/efectos adversos , Infusiones Intraarteriales , Adyuvantes Inmunológicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA