Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(34): 9036-9040, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108739

RESUMEN

Recent developments in quantum light-matter coupled systems and quantum transducers have highlighted the need for cryogenic optical measurements. In this study, we present a packaged fiber-optic coupler with a coupling efficiency of over 50% for telecom wavelength light down to the mK temperature range. Besides the high coupling efficiency, our method enables sensitive photonic device measurements that are immune to mechanical vibrations present in cryogenic setups.

2.
Comput Biol Med ; 164: 107372, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37597410

RESUMEN

Accurate prediction of drug-target affinity (DTA) plays a crucial role in drug discovery and development. Recently, deep learning methods have shown excellent predictive performance on randomly split public datasets. However, verifications are still required on this splitting method to reflect real-world problems in practical applications. And in a cold-start experimental setup, where drugs or proteins in the test set do not appear in the training set, the performance of deep learning models often significantly decreases. This indicates that improving the generalization ability of the models remains a challenge. To this end, in this study, we propose ColdDTA: using data augmentation and attention-based feature fusion to improve the generalization ability of predicting drug-target binding affinity. Specifically, ColdDTA generates new drug-target pairs by removing subgraphs of drugs. The attention-based feature fusion module is also used to better capture the drug-target interactions. We conduct cold-start experiments on three benchmark datasets, and the consistency index (CI) and mean square error (MSE) results on the Davis and KIBA datasets show that ColdDTA outperforms the five state-of-the-art baseline methods. Meanwhile, the results of area under the receiver operating characteristic (ROC-AUC) on the BindingDB dataset show that ColdDTA also has better performance on the classification task. Furthermore, visualizing the model weights allows for interpretable insights. Overall, ColdDTA can better solve the realistic DTA prediction problem. The code has been available to the public.


Asunto(s)
Benchmarking , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos , Solución de Problemas , Curva ROC
3.
Nat Commun ; 13(1): 4881, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986020
4.
Nat Commun ; 13(1): 3187, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676298

RESUMEN

Chipscale micro- and nano-optomechanical systems, hinging on the intangible radiation-pressure force, have shown their unique strength in sensing, signal transduction, and exploration of quantum physics with mechanical resonators. Optomechanical crystals, as one of the leading device platforms, enable simultaneous molding of the band structure of optical photons and microwave phonons with strong optomechanical coupling. Here, we demonstrate a new breed of optomechanical crystals in two-dimensional slab-on-substrate structures empowered by mechanical bound states in the continuum (BICs) at 8 GHz. We show symmetry-induced BIC emergence with optomechanical couplings up to g/2π ≈ 2.5 MHz per unit cell, on par with low-dimensional optomechanical crystals. Our work paves the way towards exploration of photon-phonon interaction beyond suspended microcavities, which might lead to new applications of optomechanics from phonon sensing to quantum transduction.

5.
Nat Commun ; 11(1): 5216, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060589

RESUMEN

Phonon trapping has an immense impact in many areas of science and technology, from the antennas of interferometric gravitational wave detectors to chip-scale quantum micro- and nano-mechanical oscillators. It usually relies on the mechanical suspension-an approach, while isolating selected vibrational modes, leads to serious drawbacks for interrogation of the trapped phonons, including limited heat capacity and excess noises via measurements. To circumvent these constraints, we realize a paradigm of phonon trapping using mechanical bound states in the continuum (BICs) with topological features and conducted an in-depth characterization of the mechanical losses both at room and cryogenic temperatures. Our findings of mechanical BICs combining the microwave frequency and macroscopic size unveil a unique platform for realizing mechanical oscillators in both classical and quantum regimes. The paradigm of mechanical BICs might lead to unprecedented sensing modalities for applications such as rare-event searches and the exploration of the foundations of quantum mechanics in unreached parameter spaces.

6.
Phys Rev Lett ; 122(23): 233904, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31298903

RESUMEN

Effective magnetic fields have enabled unprecedented manipulation of neutral particles including photons. In most studied cases, the effective gauge fields are defined through the phase of mode coupling between spatially discrete elements, such as optical resonators and waveguides in the case for photons. Here, in the paradigm of Bloch-wave modulated photonic crystals, we show the creation of effective magnetic fields for photons in conventional dielectric continua for the first time, via Floquet band engineering. By controlling the phase and wave vector of Bloch waves, we demonstrated the anomalous quantum Hall effect for light with distinct topological band features due to delocalized wave interference. Based on a cavity-free architecture, in which Bloch-wave modulations can be enhanced using guided resonances in photonic crystals, the study here opens the door to the realization of effective magnetic fields at large scales for optical beam steering and topological light-matter phases with broken time-reversal symmetry.

7.
Opt Express ; 27(7): 10138-10151, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045159

RESUMEN

Bound states in the continuum (BICs), an emerging type of long-lived resonances different from the cavity-based ones, have been explored in several classical systems, including photonic crystals and surface acoustic waves. Here, we reveal symmetry-protected mechanical BICs in the structure of slab-on-substrate optomechanical crystals. Using a group theory approach, we identified all the mechanical BICs at the Γ point in optomechanical crystals with C4v and C6v symmetries as examples, and analyzed their coupling with the co-localized optical BICs and guided resonances due to both moving boundary and photo-elastic effects. We verified the theoretical analysis with numerical simulations of specific optomechanical crystals which support substantial optomechanical interactions between the mechanical BICs and optical resonances. Due to the unique features of high-Q, large-size mechanical BICs and substrate-enabled thermal dissipation, this architecture of slab-on-substrate optomechanical crystals might be useful for exploring macroscopic quantum mechanical physics and enabling new applications such as high-throughput sensing and free-space beam steering.

8.
J Opt Soc Am A Opt Image Sci Vis ; 31(10): 2294-303, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25401258

RESUMEN

The construction of Green's tensor for two-dimensional gyrotropic photonic clusters composed of cylinders with circular cross sections using the semi-analytic multipole method is presented. The high efficiency and accuracy of the method is demonstrated. The developed method is applied to gyrotropic clusters that support topological chiral Hall edge states. The remarkable tolerance of chiral Hall edge modes toward substantial cluster separation is revealed. The transformation of chiral Hall edge states as the cluster separation increases is also presented. The excitation of chiral Hall edge modes for different source orientations is considered. Both gyroelectric and gyromagnetic (ferrite) clusters are treated.

9.
Nat Commun ; 5: 3225, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24476790

RESUMEN

The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential.

10.
Phys Rev Lett ; 111(20): 203901, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24289686

RESUMEN

We show that the effective gauge field for photons provides a versatile platform for controlling the flow of light. As an example we consider a photonic resonator lattice where the coupling strength between nearest neighbor resonators are harmonically modulated. By choosing different spatial distributions of the modulation phases, and hence imposing different inhomogeneous effective magnetic field configurations, we numerically demonstrate a wide variety of propagation effects including negative refraction, one-way mirror, and on- and off-axis focusing. Since the effective gauge field is imposed dynamically after a structure is constructed, our work points to the importance of the temporal degree of freedom for controlling the spatial flow of light.

11.
Opt Express ; 21(15): 18216-24, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23938692

RESUMEN

Based on the recently proposed concept of effective gauge potential and magnetic field for photons, we numerically demonstrate a photonic de Haas-van Alphen effect. We show that in a dynamically modulated photonic resonator lattice exhibiting an effect magnetic field, the trajectories of the light beam at a given frequency have the same shape as the constant energy contour for the photonic band structure of the lattice in the absence of the effective magnetic field.


Asunto(s)
Metales/química , Metales/efectos de la radiación , Modelos Químicos , Oscilometría/métodos , Teoría Cuántica , Simulación por Computador , Campos Magnéticos , Fotones
12.
Phys Rev Lett ; 110(13): 130802, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581305

RESUMEN

We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38 nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10 s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity.

13.
Phys Rev Lett ; 108(15): 153901, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587255

RESUMEN

We show that when the refractive index of a photonic system is harmonically modulated, the phase of the modulation introduces an effective gauge potential for photons. This effective gauge potential can be used to create a photonic Aharonov-Bohm effect. We show that the photonic Aharonov-Bohm effect provides the optimal mechanism for achieving complete on-chip nonmagnetic optical isolation.

14.
Opt Lett ; 36(21): 4254-6, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048382

RESUMEN

We design an ultracompact optical isolator with normal incident geometry that operates with a bandwidth that is substantial for a device of this size. For operation in a telecommunication wavelength of 1.55 µm, the thickness of the device is less than 1 µm and the device supports an operating bandwidth of 400 GHz over which the minimum contrast ratio exceeds 25 dB. Our design utilizes guided resonance in a photonic crystal slab to enhance magneto-optical effects, and exploits interference effects among multiple resonances to create desired transmission spectral line shapes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA