Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(10): 975, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312081

RESUMEN

To accurately assess the bioavailability risk of heavy metals (HMs) in a representative polymetallic mining region, we undertook an exhaustive analysis of Cu, Pb, Ni, Co, Cd, Zn, Mn, and Cr in soils from diverse land-use types, encompassing agricultural, forest, residential, and mining areas. We employed speciation analysis methods and a modified risk assessment approach to ascertain potential ecological threats posed by the HMs. Our findings reveal that both the total potential ecological risk and the modified bioavailability risks are most pronounced in the soil of the mining area. The modified bioavailability threats are primarily caused by Pb, Ni, Cd, and Co. Although the total potential ecological risk of Cu is high in the local soil, the predominance of its stable forms reduces its mobility, thereby mitigating its detrimental impact on the ecosystem. Additionally, medium modified bioavailability risks were identified in the peripheries of agricultural and forest areas, potentially attributable to geological processes and agricultural activities. Within the urban district, medium risks were observed in residential and mining areas, likely resulting from mining, metallurgy, industrial operations, and traffic-related activities. This study provides critical insights that can assist governmental authorities in devising targeted policies to alleviate health hazards associated with soils in polymetallic mining regions.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Minería , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Suelo/química , Agricultura , Disponibilidad Biológica
2.
Environ Geochem Health ; 46(1): 12, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147164

RESUMEN

To conduct a precise health risk assessment of heavy metals (HMs) in soil, it is imperative to ascertain the primary sources of potential health risks. In this study, we conducted comprehensive measurements of HMs, specifically focusing on the accumulation of Cu, Cd, Sb, Zn, and Pb in local soil, which may pose threats to environmental quality. To achieve our objective, we employed a method that combines positive matrix factorization with a health risk assessment model to quantify the health risks associated with specific sources. The results obtained from the geo-accumulation index indicate that the majority of HMs found in the local soil are influenced by anthropogenic activities. Among these sources, local industrial-related activities contributed the largest proportion of HMs to the soil at 34.7%, followed by natural sources at 28.7%, mining and metallurgy-related activities at 28.2%, and traffic-related activities at 8.40%. Although the non-carcinogenic and carcinogenic risks associated with individual HMs were found to be below safety thresholds, the cumulative health risks stemming from total HMs exceeded safety limits for children. Moreover, the unacceptable health risks for children originating from industrial-related activities, natural sources, and mining and metallurgy-related activities were primarily concentrated in proximity to mining sites and industrial areas within the local region. This investigation furnishes valuable insights that can aid governmental authorities in formulating precise control policies to mitigate health threats posed by soils in polymetallic mining areas.


Asunto(s)
Metalurgia , Metales Pesados , Niño , Humanos , China , Metales Pesados/toxicidad , Medición de Riesgo , Suelo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36293808

RESUMEN

To develop accurate air pollution control policies, it is necessary to determine the sources of different types of fugitive dust in mining and metallurgy areas. A method integrating principal component analysis and a positive matrix factorization model was used to identify the potential sources of heavy metals (HMs) in five different types of fugitive dust. The results showed accumulation of Mn, Fe, and Cu can be caused by natural geological processes, which contributed 38.55% of HMs. The Ni and Co can be released from multiple transport pathways and accumulated through local deposition, which contributed 29.27%. Mining-related activities contributed 20.11% of the HMs and showed a relatively high accumulation of As, Sn, Zn, and Cr, while traffic-related emissions contributed the rest of the HMs and were responsible for the enrichment in Pb and Cd. The co-applied source-identification models improved the precision of the identification of sources, which revealed that the local geological background and mining-related activities were mainly responsible for the accumulation of HMs in the area. The findings can help the government develop targeted control strategies for HM dispersion efficiency.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Polvo/análisis , Análisis de Componente Principal , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Metalurgia , China , Medición de Riesgo , Contaminantes del Suelo/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA