Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Neurochem Int ; 177: 105747, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657682

RESUMEN

Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.

2.
Anat Rec (Hoboken) ; 307(2): 372-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37475155

RESUMEN

Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.


Asunto(s)
FN-kappa B , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Edaravona/farmacología , Ratas Sprague-Dawley , Proteínas NLR , Transducción de Señal/fisiología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
3.
Neurochem Int ; 171: 105641, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37952830

RESUMEN

Among diseases of the central nervous system (CNS), spinal cord injury (SCI) has a high fatality rate. It has been proven that P2Y G protein-coupled purinergic receptors have a neuroprotective role in apoptosis and regeneration inside the damaged spinal cord. The P2Y12 receptor (P2Y12R) has recently been linked to peripheral neuropathy and stroke. However, the role of P2Y12R after SCI remains unclear. Our study randomly divided C57BL/6J female mice into 3 groups: Sham+DMSO, SCI+DMSO, and SCI+MRS2395. MRS2395 as a P2Y12R inhibitor was intraperitoneally injected at a dose of 1.5 mg/kg once daily for 7 days. We showed that the P2Y12R was markedly activated after injury, and it was double labeled with the microglial and neuron. Behavioral tests were employed to assess motor function recovery. By using immunofluorescence staining, the NeuN expression level was detected. The morphology of neurons was observed by hematoxylin-eosin and Nissl staining. P2Y12R, Bax, GFAP, PCNA and calbindin expression levels were detected using Western blot. Meanwhile, mitochondria and myelin sheath were observed by transmission electron microscopy (TEM). Our findings demonstrated that MRS2395 significantly enhanced motor function induced by SCI and that was used to alleviate apoptosis and astrocyte scarring. NeuN positive cells in the SCI group were lower than in the therapy group, although Bax, GFAP, PCNA and calbindin expression levels were considerably higher. Moreover, following MRS2395 therapy, the histological damage was reversed. A notable improvement in myelin sheath and mitochondrial morphology was seen in the therapy group. Together, our findings indicate that activation of P2Y12R in damaged spinal cord may be a critical event and suggest that inhibition of P2Y12R might be a feasible therapeutic strategy for treating SCI.


Asunto(s)
Enfermedades Desmielinizantes , Traumatismos de la Médula Espinal , Ratas , Ratones , Femenino , Animales , Ratas Sprague-Dawley , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Recuperación de la Función , Dimetilsulfóxido/uso terapéutico , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/uso terapéutico , Proteína X Asociada a bcl-2/metabolismo , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Médula Espinal/metabolismo , Apoptosis , Calbindinas
4.
Front Pharmacol ; 14: 1249644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915409

RESUMEN

Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.

5.
Front Microbiol ; 14: 1255525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849921

RESUMEN

Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. Traditionally, early life stress (ELS) is predisposed to IBS in adult. However, whether ELS induces IBS in early life remains unclear. Methods: Separated cohort studies were conducted in neonatal male pups of C57BL/6 mice by maternal separation (MS) model. MS and non-separation mice were scheduled to be evaluated for prime IBS-phenotypes, including visceral hypersensitivity, intestinal motility, intestinal permeability, and anxiety-like behavior. Ileal contents and fecal samples were collected and analyzed by 16S rRNA gene sequencing and bacterial community analyses. Subcellular structures of intestinal epithelial, such as epithelial tight junctions and mitochondria, were observed under transmission electron microscopy. Results: MS induced visceral hypersensitivity and decreased total intestinal transit time from childhood to adulthood. In addition, MS induced intestinal hyperpermeability and anxiety-like behavior from adolescence to adulthood. Besides, MS affected intestinal microbial composition from childhood to adulthood. Moreover, MS disrupted intestinal mitochondrial structure from childhood to adulthood. Conclusion: The study showed for the first time that MS induced IBS from early life to adulthood in mice. The disrupted intestinal mitochondrial structure and the significant dysbiosis of intestinal microbiota in early life may contribute to the initiation and progress of IBS from early life to adulthood.

6.
Mol Cell Biochem ; 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37659973

RESUMEN

Intracranial aneurysm (IA), is a localized dilation of the intracranial arteries, the rupture of which is catastrophic. Hypertension is major IA risk factor that mediates endothelial cell damage. Sox17 is highly expressed in intracranial vascular endothelial cells, and GWAS studies indicate that its genetic alteration is one of the major genetic risk factors for IA. Vascular endothelial cell injury plays a vital role in the pathogenesis of IA. The genetic ablation of Sox17 plus hypertension induced by AngII can lead to an increased incidence of intracranial aneurysms had tested in the previous animal experiments. In order to study the underlying molecular mechanisms, we established stable Sox17-overexpressing and knockdown cell lines in human brain microvascular endothelial cells (HBMECs) first. Then flow cytometry, western blotting, and immunofluorescence were employed. We found that the knockdown of Sox17 could worsen the apoptosis and autophagy of HBMECs caused by AngII, while overexpression of Sox17 had the opposite effect. Transmission electron microscopy displayed increased autophagosomes after the knockdown of Sox17 in HBMECs. The RNA-sequencing analysis shown that dysregulation of the Sox17 gene was closely associated with the autophagy-related pathways. Our study suggests that Sox17 could protect HBMECs from AngII-induced injury by regulating autophagy and apoptosis.

7.
Neuroscience ; 530: 17-25, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625689

RESUMEN

Spontaneously hypertensive rats (SHR) are the most common animal model used to study attention deficit hyperactivity disorder (ADHD). The purpose of this study was to look at the impact of neuroinflammation and autophagy on blood-brain barrier function in the prefrontal cortex and hippocampus of ADHD rats. The rats were separated into three groups: juvenile SHR (6 weeks), mature SHR (12 weeks), and comparable age WKY groups. An open-field test was used to assess rats' ability to move on their own. Immunofluorescence was used to detect the Iba1-immunopositive microglia, ZO-1 and TNF-α. Meanwhile, the expression of p62, Beclin-1, LC3B, and MMP9, MMP2, TNF-α, ZO-1, and occludin were detected by Western blot. The results have shown that Iba1-immunopositive microglia and TNF-α protein in the brain of SHR rats were significantly increased. Moreover, autophagy of cells and the level of MMP2 and MPP9 in the prefrontal cortex and hippocampus increased in SHR rats. In addition, the expression of ZO-1 and occludin was decreased in SHR rats. To sum up, the increase of neuroinflammation and excessive autophagy were essential factors for the damage of blood-brain barrier structure and function.

8.
J Transl Med ; 21(1): 351, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244993

RESUMEN

The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the human body-for example, neurogenesis and metabolism. However, their association with AD remains highly controversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurodegeneration, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. Given the above context, we reviewed the limited number of studies that have evidenced various effects following the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough investigations, along with their biological mechanisms may present a solid foundation for not only the development of effective interventions, but also as diagnostic agents for AD.


Asunto(s)
Enfermedad de Alzheimer , Yodo , Oligoelementos , Humanos , Oligoelementos/metabolismo , Oligoelementos/uso terapéutico , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Molibdeno/uso terapéutico , Yodo/uso terapéutico , Zinc/uso terapéutico , Cobre/metabolismo , Cobre/uso terapéutico
9.
Int J Neurosci ; : 1-9, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37128910

RESUMEN

PURPOSE: The aim of this study was to explore the alternations regarding the HMGB1 and TLR4/NF-κB signaling pathway in juvenile rats with febrile seizure (FS). MATERIALS AND METHODS: During the animal modeling of the FS, seizures were triggered every four days by hot water (45 °C), and repeated ten times. After forty days' modeling, rats were divided into different groups according to the degree of seizure (FS (0) - FS (V)). Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expressions of the HMGB1, TLR4 and NF-κB in the hippocampus, while Western-blot (WB) and immunofluorescence (IF) were employed to assess protein expressions. The enzyme-linked immunosorbent assay (ELISA) was used for analyzing the protein expressions in peripheral blood. RESULTS: The mRNA levels of the HMGB1, TLR4 and NF-κB in the hippocampus of both FS (V) and FS (IV) groups were significantly higher than WT, while there was no difference between FS (III) and WT. Concerning protein expressions, increased levels of the HMGB1, TLR4, and NF-κB in FS (V) were observed with a good consistency between the WB and IF, while no significant upregulation was shown in FS (IV). The ELISA results showed that the significance of the augmented proteins between the FS (V) and WT were smaller in the serum than the hippocampus. CONCLUSIONS: Our study shows seizure degree-related upregulations of HMGB1 and TLR4/NF-κB signaling pathway both in hippocampus and serum of juvenile rats with FS, suggesting the involvement of TLR/NF-κB pathway in inflammation promoted by HMGB1 during FS.

10.
Microsc Res Tech ; 86(10): 1378-1390, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37129001

RESUMEN

Ferroptosis is a newly defined form of cell death involved in neurologic disease. Resveratrol is a non-flavonoid polyphenolic compound with anti-inflammatory and antioxidant properties, but its potential therapeutic mechanism in spinal cord injury (SCI) remains unknown. Therefore, this study evaluates the mechanism by which resveratrol promotes neurological and motor function recovery in mice with SCI. The motor function of mice was evaluated using the Basso Mouse Scale score and footprint test. The effect of resveratrol on the neuronal cell state was observed using NeuN, fluoro-Jade C, and Nissl staining. The expression of iron content in injured segments was observed using Perls blue and Diaminobenzidine staining. The effect of resveratrol on the levels of malondialdehyde, glutathione, Fe2+ , and glutathione peroxidase 4 enzyme activity was also investigated. The mitochondrial ultrastructures of injured segment cells were observed using transmission electron microscope, while the protein levels of ferroptosis-related targets were detected using Western blot. Our findings show that resveratrol improves motor function after SCI and has certain neuroprotective effects; in ferroptosis-related studies, resveratrol inhibited the expression of ferroptosis-related proteins and ions. Resveratrol improved changes in mitochondrial morphology. Mechanistically, the Nrf2 inhibitor ML385 reversed the inhibitory effect of resveratrol on ferroptosis-related genes, indicating that resveratrol inhibits ferroptosis through the Nrf2/GPX4 pathway. Our findings elucidate that resveratrol promotes functional recovery, inhibits ferroptosis post-SCI, and provides an experimental basis for subsequent clinical translational research. Our study shows that resveratrol inhibits the production of lipid peroxide and the accumulation of iron by activating Nrf2/GPX4 signaling pathway, thereby inhibiting neuronal ferroptosis. At the same time, it can promote the recovery of motor function of mice.


Asunto(s)
Ferroptosis , Traumatismos de la Médula Espinal , Ratones , Animales , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/uso terapéutico , Resveratrol/farmacología , Resveratrol/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Hierro/metabolismo , Médula Espinal
11.
Psychol Health Med ; 28(9): 2462-2473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37126569

RESUMEN

Postpartum depression (PPD) is a major public health problem that has negative effects on mothers, infants, and society. This study was aimed at investigating the prevalence of PPD and elucidating the delivery factors implicated in PPD so as take more targeted measures for reducing the potential risk factors. A prospective cohort study was conducted. Following the criterion, 151 pregnant women were included in the study. The Edinburgh Postpartum Depression Scale (EPDS) and the general questionnaire were filled out 2-3 days after delivery. At weeks 2 and 6 postpartum, the EPDS was reassessed either online or via telephone. Also, electronic medical records based on relevant information during the delivery period were collected. Statistical significance was defined as p < 0.05. A high rate of PPD (31.13%) was reported. Univariate correlation analysis showed statistically significant differences in the husband-wife relationship (χ2 = 18.497, p < 0.001), neonatal health (χ2 = 14.710, p < 0.001), and breast milk volume (χ2 = 5.712, p = 0.017) between PPD and normal control groups. Adjusting for other covariates, multivariate logistic regression analysis showed that satisfactory conjugal relation could reduce the risk of PPD (OR, 0.053; p = 0.022); Neonatal health problems significantly increase the risk of PPD (OR, 6.497; p = 0.001); Adequate breast milk could alleviate the risk of PPD (OR, 0.351; P = 0.045). Data analysis suggests that marital discord and unhealthy new-born are independent risk factors; nevertheless, sufficient breast milk is a protective factor against PPD. Healthcare workers such as hospital and community doctors and social workers should pay attention to PPD. Furthermore, perinatal emotional support, health education, and EPDS assessment need to be incorporated into maternity care. Screening and personalized psychological counselling should be carried out for high-risk pregnant women with PPD.


Asunto(s)
Depresión Posparto , Servicios de Salud Materna , Recién Nacido , Femenino , Embarazo , Humanos , Depresión Posparto/epidemiología , Depresión Posparto/psicología , Esposos , Leche Humana , Estudios Prospectivos , Salud del Lactante , Factores de Riesgo , Periodo Posparto
12.
Nutrients ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904154

RESUMEN

(1) Background: Irritable bowel syndrome (IBS) is a global public health problem, the pathogenesis of which has not been fully explored. Limiting fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) can relieve symptoms in some patients with IBS. Studies have shown that normal microcirculation perfusion is necessary to maintain the primary function of the gastrointestinal system. Here, we hypothesized that IBS pathogenesis might be related to abnormalities in colonic microcirculation. A low-FODMAP diet could alleviate visceral hypersensitivity (VH) by improving colonic microcirculation; (2) Methods: C57BL/6 mice were raised to establish an IBS-like rodent model using water avoidance (WA) stress or SHAM-WA as a control, one hour per day for ten days. The mice in the WA group were administered different levels of the FODMAP diet: 2.1% regular FODMAP (WA-RF), 10% high FODMAP diet (WA-HF), 5% medium FODMAP diet (WA-MF), and 0% low FODMAP diet (WA-LF) for the following 14 days. The body weight and food consumption of the mice were recorded. Visceral sensitivity was measured as colorectal distention (CRD) using the abdominal withdrawal reflex (AWR) score. Colonic microcirculation was assessed using laser speckle contrast imaging (LCSI). Vascular endothelial-derived growth factor (VEGF) was detected using immunofluorescence staining; (3) Results: The threshold values of CRD pressure in the WA-RF, WA-HF, and WA-MF groups were significantly lower than those in the SHAM-WA group. Moreover, we observed that colonic microcirculation perfusion decreased, and the expression of VEGF protein increased in these three groups of mice. Interestingly, a low-FODMAP dietary intervention could reverse this situation. Specifically, a low-FODMAP diet increased colonic microcirculation perfusion, reduced VEGF protein expression in mice, and increased the threshold of VH. There was a significant positive correlation between colonic microcirculation and threshold for VH; (4) Conclusions: These results demonstrate that a low-FODMAP diet can alter VH by affecting colonic microcirculation. Changes in intestinal microcirculation may be related to VEGF expression.


Asunto(s)
Disacáridos , Síndrome del Colon Irritable , Ratones , Animales , Monosacáridos , Agua , Dieta FODMAP , Microcirculación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Fermentación , Oligosacáridos , Dieta/métodos , Dieta Baja en Carbohidratos/métodos
13.
Anat Rec (Hoboken) ; 306(3): 638-650, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437694

RESUMEN

Early brain injury (EBI) refers to a series of pathophysiological brain lesions that occur within 72 hr after subarachnoid hemorrhage (SAH), which is an extremely crucial factor in the poor prognosis of patients. In EBI, ferroptosis has been proven to cause neuronal death. Quercetin (QCT) is effective in deactivating reactive oxygen species (ROS), inhibiting lipid peroxidation, and even chelating iron, but its role in SAH remains unclear. In this study, the mortality rate, severity grade of SAH, brain water content (BWC), blood-brain barrier permeability, and neurological function of the rats were detected. Moreover, mitochondrial morphology in cortical neurons were observed and their sizes were subsequently quantified. The levels of lipid peroxidation on glutathione and malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were determined, whereas the protein expressions of glutathione peroxidase 4 (GPX4), SLC7A11 (xCT), transferrin receptor 1 (TfR1), and ferroportin-1 (FPN1) were analyzed by western immunoblotting. The neurodegeneration involved in EBI was investigated by fluoro-Jade C staining, while iron staining was utilized to measure iron content. Our results showed that inhibition of ferroptosis by QCT could suppress EBI and improve neurological function in SAH rats. QCT increased the expression levels of GPX4, xCT, and FPN1, while downregulated TfR1, and exerted protective effects on neurons as well as alleviated iron accumulation and lipid peroxidation in the cortex of SAH rats. In conclusion, our study revealed that QCT might alleviate the EBI by inhibiting ferroptosis in SAH rats.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Ratas , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Hierro
14.
Microsc Res Tech ; 86(2): 223-231, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36354743

RESUMEN

Retinol-binding protein 4 (RBP4) is the sole specific transport protein for vitamin A (retinol), but it is also an adipokine with retinol-independent, proinflammatory activity associated with diabetes and diabetic retinopathy (DR). Most previous studies focused on the relationship between elevated serum RBP4 levels and DR. Since serum RBP4 cannot cross the blood-retinal barrier, the level of retinal RBP4 is independent of serum RBP4, and the change of retinal RBP4 and its potential pathogenic mechanism in DR has not been studied. We showed that the retinal RBP4 levels were raised in Streptozotocin-induced diabetic mice though the serum RBP4 levels were decreased. Intravitreal injection of RBP4 protein in mice results in activation of microglia, loss of retinal ganglion cells (RGCs) and bipolar cells. Minocycline (MC) can reverse the activation of microglia induced by RBP4, protecting RGCs and bipolar cells. These findings suggest that retinal RBP4 levels were raised in diabetic mice, and RBP4 can directly induce retinal neurodegeneration in mice through microglia. RESEARCH HIGHLIGHTS: We revealed that the retinal RBP4 levels were raised in diabetes and elevated retinal RBP4 can induce retinal neurodegeneration through microglia. Inhibition of neuroinflammation or reduction of retinal RBP4 level may be a potential therapeutic strategy to prevent diabetic retinal neurodegeration.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratones , Animales , Vitamina A/metabolismo , Microglía/metabolismo , Diabetes Mellitus Experimental/complicaciones , Retina
15.
Behav Brain Res ; 438: 114208, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36356720

RESUMEN

BACKGROUND: Postpartum depression (PPD) causes maternal mortality, and has a high disability rate. In recent years, studies have suggested the Sirt1 gene to be involved in the pathogenesis of depression. Resveratrol (RSV), an activator of Sirt1, has been investigated in depressive behavior. However, its effect on PPD remains to be thoroughly elucidated. METHODS: We employed a mice model with bilateral oophorectomy combined with hormone-simulated pregnancy to assess postpartum depression-like behavior. The behavioral tests were performed 2 days after the withdrawal of estradiol benzoate. RSV was administered subcutaneously to the PPD model mice. Several behavioral tests were executed, including the open field test, forced swimming test, and tail suspension test. Western blot analyses and immunofluorescence staining were used to evaluate protein expression levels of SIRT1, autophagy markers, and the AKT/mTOR. RESULTS: Postpartum depressive-like behavior was triggered following the withdrawal of estradiol benzoate after hormone-stimulated-pregnancy. RSV improved postpartum depressive-like behavior of mice via its upregulation of the SIRT1 and autophagy markers, such as Beclin1, ATG5 and LC3B. Also, the downregulation of the p62 protein expression was observed. More importantly, we also detected the inhibition of phosphorylated AKT and mTOR in the hippocampus of postpartum depressive-like mice. CONCLUSION: RSV could alleviate postpartum depression-like behavior in mice by stimulating the SIRT1, induce autophagy and inhibit the AKT/ mTOR signaling pathway.


Asunto(s)
Depresión Posparto , Sirtuina 1 , Animales , Femenino , Ratones , Embarazo , Autofagia , Depresión Posparto/tratamiento farmacológico , Depresión Posparto/metabolismo , Hormonas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Sirtuina 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
16.
Front Aging Neurosci ; 14: 1033434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353687

RESUMEN

Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is involved in many physiological and pathological processes, including temperature sensing, synaptic plasticity regulation, and neurodegenerative diseases. However, the gating mechanism of TRPM2 channel is complex, which hinders its functional research. With the discovery of the Ca2+ binding site in the S2-S3 domain of TRPM2 channel, more and more attention has been drawn to the role of the transmembrane segments in channel gating. In this study, we focused on the D820-F867 segment around the S2 domain, and identified the key residues on it. Functional assays of the deletion mutants displayed that the deletions of D820-W835 and L836-P851 destroyed channel function totally, indicating the importance of these two segments. Sequence alignments on them found three polar and charged residues with high conservation (D820, E829, and R845). D820A, E829A, and R845A which removed the charge and the side chain of the residues were tested by 500 µM adenosine diphosphate-ribose (ADPR) or 50 mM Ca2+. E829A and R845A affected the characteristic of channel currents, while D820A behaved similarly to WT, indicating the participations of E829 and R845 in channel gating. The charge reversing mutants, E829K and R845D were then constructed and the electrophysiological tests showed that E829A and E829K made the channel lose function. Interestingly, R845A and R845D exhibited an inactivation process when using 500 µM ADPR, but activated normally by 50 mM Ca2+. Our data suggested that the negative charge at E829 took a vital part in channel activation, and R845 increased the stability of the Ca2+ combination in S2-S3 domain, thus guaranteeing the opening of TRPM2 channel. In summary, our identification of the key residues E829 and R845 in the transmembrane segments of TRPM2. By exploring the gating process of TRPM2 channel, our work helps us better understand the mechanism of TRPM2 as a potential biomarker in neurodegenerative diseases, and provides a new approach for the prediction, diagnosis, and prognosis of neurodegenerative diseases.

17.
Front Cell Dev Biol ; 10: 901093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800894

RESUMEN

Attention deficit hyperactivity disorder (ADHD) has a complex etiology, and its specific causal factors remain to be elucidated. Aberration of nitric oxide synthase (nNOS) and inflammation, together with astrocytic and microglial cells have been continually associated with several neurological disorders, including ADHD. Using spontaneously hypertensive rat (SHR), we investigated the changes in nNOS, inflammatory, microglial and astrocytic markers in the frontal cortex and hippocampus at three different ages: onset of hypertension stage (i.e., 6 weeks after birth of SHR), established hypertension stage (i.e., 12 weeks after birth of SHR) and senescent stage (i.e., 12 months after birth of SHR), and compared with its age-matched normotensive control, Wistar-Kyoto (WKY) rats. A significant upregulation of Iba-1 expression in the senescent stage of SHR was observed. Further, we observed an upregulated nNOS expression in both onset and established stages of SHR, and a downregulated nNOS in the senescent stage. Our study showed an age-related increment of astrogliosis in the cortex and hippocampi of aged SHR. On the basis of our results, alterations in the nNOS and Iba-1 expressions, as well as age-related astrogliosis, may contribute to ADHD pathogenesis.

18.
Behav Brain Res ; 433: 114004, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35811001

RESUMEN

Post-traumatic stress disorder is a major public health problem due to its frequency, chronicity, and disability that impact daily life. Studies have evidenced that the activation/inhibition of autophagy and excessive activation of microglia have a relationship with PTSD. For this purpose, C57BL/6 mice were employed to establish the post-traumatic stress disorder pathology mice model by conditioned fear and single prolonged stress (CF + SPS). Fluoxetine and PLX3397 were administered. PTSD-like behaviors were alleviated following fluoxetine treatment, evidenced via open field and conditioned fear test. Autophagy-associated proteins were upregulated, and inflammation factors were reduced after fluoxetine treatment. Microglia depletion mice showed a lower inflammatory level. In conclusion, fluoxetine can promote autophagy and inhibit neuroinflammation in mice model of PTSD, providing a theoretical basis for fluoxetine in treating PTSD.


Asunto(s)
Trastornos por Estrés Postraumático , Animales , Autofagia , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Trastornos por Estrés Postraumático/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico
19.
Phytomedicine ; 104: 154298, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35797865

RESUMEN

BACKGROUND: A blockage in a blood vessel can cause reduced blood flow to the brain, which eventually leads to the death of surrounding tissue. Several studies have attempted to develop an effective intervention to reverse this process and improve the health status of affected individuals. Due to its indirect effect on cellular functions and metabolism, the hypoxia-inducible factor (HIF-1α) protein has been proposed as a promising transcription factor in the treatment of stroke. PURPOSE: The current study aims to explore the relation between HIF-1 α and thymoquinone (TQ) in the attenuation of ischemic brain damage and the possible mechanism of this relation to reduce cell death. METHODS: For this purpose, dimethyloxallyl glycine (DMOG), 8 mg/kg, Acriflavine (ACF), 1.5 mg/kg, and both combined with TQ (5 mg/kg) were assessed. Male C57 mice were used to establish an ischemic stroke model by using endothelin-1 (ET-1) (400 pmole/µl) intra- cranial injection. The ultrastructure alterations of neuronal soma, axons, and mitochondria after stroke and treatment were well addressed. Besides, the expression levels of VEGF, HIF-1α, Nrf2, and HO-1 were evaluated. Meanwhile, apoptosis and autophagy-related proteins were also investigated. RESULTS: Treatment of ischemic stroke by TQ can activate the HIF-1α pathway and its downstream genes such as VEGF, TrkB, and PI3K, which in turn enhance angiogenesis and neurogenesis. Our study revealed that TQ has the same effect as DMOG to activate HIF-1 α and can improve motor dysfunction after ischemic stroke. Further, we demonstrated that both TQ and DMOG effectively attenuate the organelle's damage following ischemic stroke, which was confirmed by the cryogenic transmission electron microscope. The synergistic effect of TQ and DMOG may lead to a chemo-modulation action in the autophagy process after stroke onset and this result is validated by the western blot and rt-qPCR techniques. CONCLUSION: Our finding revealed the potential role of TQ as a HIF-1 α activator to reduce cell death, modulate autophagy and decrease the infarct volume after ischemic stroke onset. The neuroprotective effect of TQ is achieved by decreasing the inflammation and increasing angiogenesis as well as neurogenesis via induction of the HIF-1α-VEGF/Nrf2-HO-1-TrkB-PI3K pathway.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Benzoquinonas , Encéfalo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Front Cell Neurosci ; 16: 837166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370559

RESUMEN

Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut-brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...