Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511198

RESUMEN

Management of chronic inflammation and wounds has always been a key issue in the pharmaceutical and healthcare sectors. Curcumin (CCM) is an active ingredient extracted from turmeric rhizomes with antioxidant, anti-inflammatory, and antibacterial activities, thus showing significant effectiveness toward wound healing. However, its shortcomings, such as poor water solubility, poor chemical stability, and fast metabolic rate, limit its bioavailability and long-term use. In this context, hydrogels appear to be a versatile matrix for carrying and stabilizing drugs due to their biomimetic structure, soft porous microarchitecture, and favorable biomechanical properties. The drug loading/releasing efficiencies can also be controlled via using highly crystalline and porous metal-organic frameworks (MOFs). Herein, a flexible hydrogel composed of a sodium alginate (SA) matrix and CCM-loaded MOFs was constructed for long-term drug release and antibacterial activity. The morphology and physicochemical properties of composite hydrogels were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and mechanical property tests. The results showed that the composite hydrogel was highly twistable and bendable to comply with human skin mechanically. The as-prepared hydrogel could capture efficient CCM for slow drug release and effectively kill bacteria. Therefore, such composite hydrogel is expected to provide a new management system for chronic wound dressings.


Asunto(s)
Antibacterianos , Curcumina , Hidrogeles , Estructuras Metalorgánicas , Zinc , Curcumina/química , Curcumina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Hidrogeles/química , Preparaciones de Acción Retardada , Zinc/química , Imidazoles/química , Zeolitas/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
2.
Materials (Basel) ; 11(11)2018 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-30400358

RESUMEN

In this work, the influence of graphene on nitrogen and phosphorus in a batch Chlorella reactor was studied. The impact of graphene on the removal performance of Chlorella was investigated in a home-built sewage treatment system with seven identical sequencing batch Chlorella reactors with graphene contents of 0 mg/L (T1), 0.05 mg/L (T2), 0.1 mg/L (T3), 0.2 mg/L (T4), 0.4 mg/L (T5), 0.8 mg/L (T6) and 10 mg/L (T7). The influence of graphene concentration and reaction time on the pollutant removal performance was studied. The malondialdehyde (MDA) and total superoxide dismutase (SOD) concentrations in each reactor were measured, and optical microscopy and scanning electron microscopy (SEM) characterizations were performed to determine the related mechanism. The results show that after 168 h, the total nitrogen (TN), ammonia nitrogen (AN) and total phosphorus (TP) removal rates of reactors T1⁻T7 become stable, and the TN, AN and TP removal rates were gradually reduced with increasing graphene concentration. At 96 h, the concentrations of both MDA and SOD in T1⁻T7 gradually increased as the graphene concentration increased. In optical microscopy and SEM measurements, it was found that graphene was adsorbed on the surface of Chlorella, and entered Chlorella cells, deforming and reducing Chlorella. Through the blood plate count method, we estimated an average Chlorella reduction of 16%. According to the water quality and microscopic experiments, it can be concluded that the addition of graphene causes oxidative damage to microalgae and destruction of the Chlorella cell wall and cell membrane, inhibiting the nitrogen and phosphorus removal in Chlorella reactors. This study provides theoretical and practical support for the safe use of graphene.

3.
Artículo en Inglés | MEDLINE | ID: mdl-30002283

RESUMEN

The aim of this study was to improve the removal of nitrogen pollutants from artificial sewage by a modeled two-stage constructed rapid infiltration (CRI) system. The C/N ratio of the second stage influent was elevated by addition of glucose. When the C/N ratio was increased to 5, the mean removal efficiency of total nitrogen (TN) reached up to 75.4%. Under this condition, the number of denitrifying bacteria in the permanently submerged denitrifying section (the second stage) was 22 times higher than that in the control experiment without added glucose. Elevation of the C/N ratio resulted in lower concentrations of nitrate and TN in the second stage effluent, without impairment of chemical oxygen demand removal. The concentration of nitrate and TN in effluent decreased as the abundance of denitrifying bacteria increased. Moreover, the bacterial biofilms that had formed in the sand of the second stage container were analyzed. The secretion of extracellular polymeric substances, a major constituent of biofilms, was enhanced as a result of the elevated C/N ratio, which lead to the improved protection of the bacteria and enhanced the removal of pollutants.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo , Biopelículas , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitratos/metabolismo , Aguas del Alcantarillado , Purificación del Agua/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-29617281

RESUMEN

A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO3) to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO3 to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO3 had no obvious effect. The addition of 5mM KClO3 in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover, if the shortcut denitrification process will be achieved in the subsequent research, it could save 60.27 mg CH3OH per litre of sewage in the CRI system compared with the full denitrification process.


Asunto(s)
Reactores Biológicos/microbiología , Cloratos/química , Filtración/métodos , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Desnitrificación , Nitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...