Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 14(5): e3508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688894

RESUMEN

BACKGROUND: The inflammation and synaptic dysfunction induced by mitochondrial dysfunction play essential roles in the learning and memory impairment associated with sleep dysfunction. Elamipretide (SS-31), a novel mitochondrion-targeted antioxidant, was proven to improve mitochondrial dysfunction, the inflammatory response, synaptic dysfunction, and cognitive impairment in models of cerebral ischemia, sepsis, and type 2 diabetes. However, the potential for SS-31 to improve the cognitive impairment induced by chronic sleep deprivation (CSD) and its underlying mechanisms is unknown. METHODS: Adult c57BL/6J mice were subjected to CSD for 21 days using an activity wheel accompanied by daily intraperitoneal injection of SS-31 (5 mg/kg). The novel object recognition and Morris water maze test were used to evaluate hippocampus-dependent cognitive function. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to determine the effects of CSD and SS-31 on markers of mitochondria, inflammation response, and synaptic function. Enzyme-linked immunosorbent assays were used to examine the levels of proinflammatory cytokines. RESULTS: SS-31 could improve the cognitive impairment induced by CSD. In particular, SS-31 treatment restored the CSD-induced decrease in sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator alpha levels and the increase in levels nuclear factor kappa-B and inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha. Furthermore, SS-31 significantly increased the levels of brain-derived neurotrophic factor, postsynaptic density protein-95, and synaptophysin in CSD mice. CONCLUSION: Taken together, these results suggest that SS-31 could improve CSD-induced mitochondrial biogenesis dysfunction, inflammatory response, synaptic dysfunction, and cognitive impairment by increasing SIRT1 expression levels.


Asunto(s)
Antioxidantes , Ratones Endogámicos C57BL , Mitocondrias , Oligopéptidos , Privación de Sueño , Animales , Ratones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/administración & dosificación , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antioxidantes/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Sirtuina 1/metabolismo , Modelos Animales de Enfermedad
2.
Front Behav Neurosci ; 17: 1271653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074521

RESUMEN

Maternal exposure to inflammation may represent a major risk factor for neuropsychiatric disorders with associated cognitive dysfunction in offspring in later life. Growing evidence has suggested that resveratrol exerts a beneficial effect on cognitive impairment via its anti-inflammatory and antioxidant properties and by ameliorating synaptic dysfunction. However, how resveratrol affects maternal immune activation-induced cognitive dysfunction and the underlying mechanisms are unclear. In the present study, pregnant dams were given an intraperitoneal injection of lipopolysaccharide (LPS; 50 µg/kg) on gestational day 15. Subsequently, the offspring mice were treated or not with resveratrol (40 mg/kg) from postnatal day (PND) 60 to PND 88. Male offspring were selected for the evaluation of cognitive function using the Morris water maze test. The hippocampal levels of pro-inflammatory cytokines were examined by ELISA. The mRNA and protein levels of sirtuin-1 (SIRT1), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95), and synaptophysin (SYP) were determined by RT-qPCR and western blot, respectively. The results showed that male offspring mice exposed to LPS in utero exhibited learning and memory impairment. Additionally, the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were increased while those of SIRT1, BDNF, PSD-95, and SYP were decreased in male offspring of LPS-treated mothers. Treatment with resveratrol reversed cognitive impairment and attenuated the increase in the levels of pro-inflammatory cytokines induced by maternal immune activation in the offspring mice. Furthermore, resveratrol reversed the deleterious effects of maternal immune activation on SIRT1, BDNF, PSD-95, and SYP levels in the hippocampus. Collectively, our results suggested that resveratrol can effectively improve learning and memory impairment induced by maternal immune activation via the modulation of inflammation and synaptic dysfunction.

3.
Toxics ; 11(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37235279

RESUMEN

Cigarette smoke is a major risk factor for gastric cancer. Exosomes are an important part of intercellular and intra-organ communication systems and can carry circRNA and other components to play a regulatory role in the occurrence and development of gastric cancer. However, it is unclear whether cigarette smoke can affect exosomes and exosomal circRNA to promote the development of gastric cancer. Exosomes secreted by cancer cells promote cancer development by affecting surrounding normal cells. Herein, we aimed to clarify whether the exosomes secreted by cigarette smoke-induced gastric cancer cells can promote the development of gastric cancer by affecting the surrounding gastric mucosal epithelial cells (GES-1). In the present study, we treated gastric cancer cells with cigarette smoke extract for 4 days and demonstrated that cigarette smoke promotes the stemness and EMT of gastric cancer cells and cigarette smoke-induced exosomes promote stemness gene expression, EMT processes and the proliferation of GES-1 cells. We further found that circ0000670 was up-regulated in tissues of gastric cancer patients with smoking history, cigarette smoke-induced gastric cancer cells and their exosomes. Functional assays showed that circ0000670 knockdown inhibited the promoting effects of cigarette smoke-induced exosomes on the stemness and EMT characteristic of GES-1 cells, whereas its overexpression had the opposite effect. In addition, exosomal circ0000670 was found to promote the development of gastric cancer by regulating the Wnt/ß-catenin pathway. Our findings indicated that exosomal circ0000670 promotes cigarette smoke-induced gastric cancer development, which might provide a new basis for the treatment of cigarette smoke-related gastric cancer.

4.
Med Oncol ; 40(1): 24, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454423

RESUMEN

As one of the most common malignant cancers in the world, gastric cancer is caused by mang factors among which tobacco smoke is an important risk factor. Gastric cancer stem cells (GCSCs) and the derived exosomes play a key role in the occurrence and development of gastric cancer, and exosomal circRNA is considered as a new regulatory factor in the development of gastric cancer. However, it is unclear whether tobacco smoke can affect exosomes and their transport circRNAs to promote the development of gastric cancer. Herein, we provided a new insight into tobacco smoke promoting the progression of gastric cancer. In the present study, we demonstrated that tobacco smoke-induced exosomes promoted the spheroidizing ability, stemness genes expression, and epithelial-mesenchymal transition (EMT) process of GCSCs. We further found that hsa-circRNA-000670 (circ670) was up-regulated in tissues of gastric cancer patients with smoking history, tobacco smoke-induced GCSCs, and their exosomes. Functional assays have shown that circ670 knockdown inhibited the stemness and EMT process of GCSCs, whereas circ670 overexpression appeared to have an opposite effect. Our findings indicated that exosomal circ670 promotes the development of tobacco smoke-induced gastric cancer, which may provide insight into the mechanism of tobacco smoke promoting the progression of gastric cancer.


Asunto(s)
Exosomas , Neoplasias Gástricas , Contaminación por Humo de Tabaco , Humanos , ARN Circular/genética , Neoplasias Gástricas/genética , Nicotiana/efectos adversos , Células Madre Neoplásicas
5.
Front Oncol ; 12: 845703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463362

RESUMEN

Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.

6.
Cancer Manag Res ; 13: 8121-8129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737640

RESUMEN

Gastric cancer (GC) is a common malignant tumor affecting human health, with occult onset and poor prognosis. Exosomes are extracellular vesicles secreted by almost all cells, which can reflect the state of source cells or tissues. It is reported that exosomes are involved in almost all processes of GC. Exosomes provided a window to understand changes in cell or tissue states by carrying active components such as circular RNAs (circRNAs). CircRNAs are a naturally occurring class of endogenous noncoding RNAs and abnormal expression during the occurrence and development of GC. Exosomal circRNAs are those circRNAs stably existing in exosomes and having high clinical values as novel potential diagnosis and prognosis biomarkers of GC, which have the characteristics of abnormal expression, tissue specificity and development stage specificity. Herein, we briefly summarize the functions and roles and the current research progress of exosomes and exosomal circRNAs in GC with a focus on the potential application for GC progression, diagnosis and prognosis. We also prospected the clinical application of exosomes and exosomal circRNAs in the future.

7.
Front Oncol ; 10: 606485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33489913

RESUMEN

Circular RNAs (circRNAs) are newly discovered intriguing RNAs due to the covalently closed loop structure, high stability, tissue specificity, and functional diversity. In recent years, a large number of circRNAs have been identified through high-throughput sequencing technology and bioinformatics methods, the abnormal expression of circRNAs are closely related to many diseases including bladder cancer (BC). CircRNAs have been proven to have several functions, such as acting as a regulator of parental gene transcription, miRNA sponge and interacting with proteins to regulate its expression. In addition, some circRNAs have been identified to encode proteins. CircRNAs have the characteristics of high abundance, high stability, wide distribution in body fluids, tissue specificity, and developmental stage specificity, which determine that circRNAs has great potential to be utilized as biomarkers for BC. Herein, we briefly summarize the biogenesis, functions and roles, and the current research progress of circRNAs in BC with a focus on the potential application for BC diagnosis, treatment, and prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...