Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Radiology ; 311(3): e231937, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38916510

RESUMEN

Background Diagnosing osteoporosis is challenging due to its often asymptomatic presentation, which highlights the importance of providing screening for high-risk populations. Purpose To evaluate the effectiveness of dual-energy x-ray absorptiometry (DXA) screening in high-risk patients with osteoporosis identified by an artificial intelligence (AI) model using chest radiographs. Materials and Methods This randomized controlled trial conducted at an academic medical center included participants 40 years of age or older who had undergone chest radiography between January and December 2022 without a history of DXA examination. High-risk participants identified with the AI-enabled chest radiographs were randomly allocated to either a screening group, which was offered fully reimbursed DXA examinations between January and June 2023, or a control group, which received usual care, defined as DXA examination by a physician or patient on their own initiative without AI intervention. A logistic regression was used to test the difference in the primary outcome, new-onset osteoporosis, between the screening and control groups. Results Of the 40 658 enrolled participants, 4912 (12.1%) were identified by the AI model as high risk, with 2456 assigned to the screening group (mean age, 71.8 years ± 11.5 [SD]; 1909 female) and 2456 assigned to the control group (mean age, 72.1 years ± 11.8; 1872 female). A total of 315 of 2456 (12.8%) participants in the screening group underwent fully reimbursed DXA, and 237 of 315 (75.2%) were identified with new-onset osteoporosis. After including DXA results by means of usual care in both screening and control groups, the screening group exhibited higher rates of osteoporosis detection (272 of 2456 [11.1%] vs 27 of 2456 [1.1%]; odds ratio [OR], 11.2 [95% CI: 7.5, 16.7]; P < .001) compared with the control group. The ORs of osteoporosis diagnosis were increased in screening group participants who did not meet formalized criteria for DXA compared with those who did (OR, 23.2 [95% CI: 10.2, 53.1] vs OR, 8.0 [95% CI: 5.0, 12.6]; interactive P = .03). Conclusion Providing DXA screening to a high-risk group identified with AI-enabled chest radiographs can effectively diagnose more patients with osteoporosis. Clinical trial registration no. NCT05721157 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Smith and Rothenberg in this issue.


Asunto(s)
Absorciometría de Fotón , Redes Neurales de la Computación , Osteoporosis , Radiografía Torácica , Humanos , Femenino , Osteoporosis/diagnóstico por imagen , Masculino , Radiografía Torácica/métodos , Absorciometría de Fotón/métodos , Anciano , Tamizaje Masivo/métodos , Persona de Mediana Edad
2.
Aging (Albany NY) ; 16(10): 8717-8731, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761181

RESUMEN

BACKGROUND: Valvular heart disease (VHD) is becoming increasingly important to manage the risk of future complications. Electrocardiographic (ECG) changes may be related to multiple VHDs, and (AI)-enabled ECG has been able to detect some VHDs. We aimed to develop five deep learning models (DLMs) to identify aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation. METHODS: Between 2010 and 2021, 77,047 patients with echocardiography and 12-lead ECG performed within 7 days were identified from an academic medical center to provide DLM development (122,728 ECGs), and internal validation (7,637 ECGs). Additional 11,800 patients from a community hospital were identified to external validation. The ECGs were classified as with or without moderate-to-severe VHDs according to transthoracic echocardiography (TTE) records, and we also collected the other echocardiographic data and follow-up TTE records to identify new-onset valvular heart diseases. RESULTS: AI-ECG adjusted for age and sex achieved areas under the curves (AUCs) of >0.84, >0.80, >0.77, >0.83, and >0.81 for detecting aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation, respectively. Since predictions of each DLM shared similar components of ECG rhythms, the positive findings of each DLM were highly correlated with other valvular heart diseases. Of note, a total of 37.5-51.7% of false-positive predictions had at least one significant echocardiographic finding, which may lead to a significantly higher risk of future moderate-to-severe VHDs in patients with initially minimal-to-mild VHDs. CONCLUSION: AI-ECG may be used as a large-scale screening tool for detecting VHDs and a basis to undergo an echocardiography.


Asunto(s)
Inteligencia Artificial , Electrocardiografía , Enfermedades de las Válvulas Cardíacas , Humanos , Electrocardiografía/métodos , Femenino , Masculino , Enfermedades de las Válvulas Cardíacas/diagnóstico , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/fisiopatología , Anciano , Persona de Mediana Edad , Aprendizaje Profundo , Ecocardiografía , Anciano de 80 o más Años
3.
Nat Med ; 30(5): 1461-1470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684860

RESUMEN

The early identification of vulnerable patients has the potential to improve outcomes but poses a substantial challenge in clinical practice. This study evaluated the ability of an artificial intelligence (AI)-enabled electrocardiogram (ECG) to identify hospitalized patients with a high risk of mortality in a multisite randomized controlled trial involving 39 physicians and 15,965 patients. The AI-ECG alert intervention included an AI report and warning messages delivered to the physicians, flagging patients predicted to be at high risk of mortality. The trial met its primary outcome, finding that implementation of the AI-ECG alert was associated with a significant reduction in all-cause mortality within 90 days: 3.6% patients in the intervention group died within 90 days, compared to 4.3% in the control group (4.3%) (hazard ratio (HR) = 0.83, 95% confidence interval (CI) = 0.70-0.99). A prespecified analysis showed that reduction in all-cause mortality associated with the AI-ECG alert was observed primarily in patients with high-risk ECGs (HR = 0.69, 95% CI = 0.53-0.90). In analyses of secondary outcomes, patients in the intervention group with high-risk ECGs received increased levels of intensive care compared to the control group; for the high-risk ECG group of patients, implementation of the AI-ECG alert was associated with a significant reduction in the risk of cardiac death (0.2% in the intervention arm versus 2.4% in the control arm, HR = 0.07, 95% CI = 0.01-0.56). While the precise means by which implementation of the AI-ECG alert led to decreased mortality are to be fully elucidated, these results indicate that such implementation assists in the detection of high-risk patients, prompting timely clinical care and reducing mortality. ClinicalTrials.gov registration: NCT05118035 .


Asunto(s)
Inteligencia Artificial , Electrocardiografía , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad
4.
J Med Syst ; 48(1): 12, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217829

RESUMEN

A deep learning model was developed to identify osteoporosis from chest X-ray (CXR) features with high accuracy in internal and external validation. It has significant prognostic implications, identifying individuals at higher risk of all-cause mortality. This Artificial Intelligence (AI)-enabled CXR strategy may function as an early detection screening tool for osteoporosis. The aim of this study was to develop a deep learning model (DLM) to identify osteoporosis via CXR features and investigate the performance and clinical implications. This study collected 48,353 CXRs with the corresponding T score according to Dual energy X-ray Absorptiometry (DXA) from the academic medical center. Among these, 35,633 CXRs were used to identify CXR- Osteoporosis (CXR-OP). Another 12,720 CXRs were used to validate the performance, which was evaluated by the area under the receiver operating characteristic curve (AUC). Furthermore, CXR-OP was tested to assess the long-term risks of mortality, which were evaluated by Kaplan‒Meier survival analysis and the Cox proportional hazards model. The DLM utilizing CXR achieved AUCs of 0.930 and 0.892 during internal and external validation, respectively. The group that underwent DXA with CXR-OP had a higher risk of all-cause mortality (hazard ratio [HR] 2.59, 95% CI: 1.83-3.67), and those classified as CXR-OP in the group without DXA also had higher all-cause mortality (HR: 1.67, 95% CI: 1.61-1.72) in the internal validation set. The external validation set produced similar results. Our DLM uses CXRs for early detection of osteoporosis, aiding physicians to identify those at risk. It has significant prognostic implications, improving life quality and reducing mortality. AI-enabled CXR strategy may serve as a screening tool.


Asunto(s)
Aprendizaje Profundo , Osteoporosis , Humanos , Inteligencia Artificial , Rayos X , Osteoporosis/diagnóstico por imagen , Absorciometría de Fotón/métodos
5.
Can J Cardiol ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38092190

RESUMEN

BACKGROUND: The burden of asymptomatic left ventricular dysfunction (LVD) is greater than that of heart failure; however, a cost-effective tool for asymptomatic LVD screening has not been well validated. We aimed to prospectively validate an artificial intelligence (AI)-enabled electrocardiography (ECG) algorithm for asymptomatic LVD detection and evaluate its cost-effectiveness for opportunistic screening. METHODS: In this prospective observational study, patients undergoing ECG at outpatient clinics or health check-ups were enrolled in 2 hospitals in Taiwan. Patients were stratified into LVD (left ventricular ejection fraction ≤ 40%) risk groups according to a previously developed ECG algorithm. The performance of AI-ECG was used to conduct a cost-effectiveness analysis of LVD screening compared with no screening. Incremental cost-effectiveness ratio (ICER) and sensitivity analyses were used to examine the cost-effectiveness and robustness of the results. RESULTS: Among the 29,137 patients, the algorithm demonstrated areas under the receiver operating characteristic curves of 0.984 and 0.945 for detecting LVD within 28 days in the 2 hospital cohorts. For patients not initially scheduled for ECG, the algorithm predicted future echocardiograms (high-risk, 46.2%; medium-risk, 31.4%; low-risk, 14.6%) and LVD (high-risk, 26.2%; medium-risk, 3.4%; low-risk, 0.1%) at 12 months. Opportunistic screening with AI-ECG could result in a negative ICER of -$7,439 for patients aged 65 years, with consistent cost-savings across age groups and particularly in men. Approximately 91.5% of the cases were found to be cost-effective at the willingness-to-pay threshold of $30,000 in the probabilistic analysis. CONCLUSIONS: The use of AI-ECG for asymptomatic LVD risk stratification is promising, and opportunistic screening in outpatient clinics has the potential to reduce costs.

6.
Acta Cardiol Sin ; 39(6): 913-928, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38022412

RESUMEN

Background: The early diagnosis of pulmonary embolism (PE) remains a challenge. Electrocardiograms (ECGs) and D-dimer levels are used to screen potential cases. Objective: To develop a deep learning model (DLM) to detect PE using ECGs and investigate the clinical value of false detections in patients without PE. Methods: Among patients who visited the emergency department between 2011 and 2019, PE cases were identified through a review of medical records. Non-PE ECGs were collected from patients without a diagnostic code for PE. There were 113 PE and 51,456 non-PE ECGs in the training and validation sets for developing the DLM, respectively, and 27 PE and 13,105 non-PE cases in an independent testing set for performance validation. A human-machine competition was conducted from the testing set to compare the performance of the DLM with that of physicians. Receiver operating characteristic (ROC) curves, sensitivity, and specificity were used to determine the diagnostic value. Survival analysis was used to assess the prognosis of the patients without PE, stratified by DLM prediction. Results: The DLM was as effective as physicians in diagnosing PE, with 70.8% sensitivity and 69.7% specificity. The area under the ROC curve of DLM was 0.778 in the testing set and up to 0.9 with D-dimer and demographic data. The non-PE patients whose ECG was misclassified as PE by DLM had higher all-cause mortality [hazard ratio (HR) 2.13 (1.51-3.02)] and risk of non-cardiovascular hospitalization [HR 1.55 (1.42-1.68)] than those correctly classified. Conclusions: A DLM-enhanced ECG system may prompt PE recognition and provide prognostic outcomes in patients with false-positive predictions.

7.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685262

RESUMEN

BACKGROUND: The B-type natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (pBNP) are predictors of cardiovascular morbidity and mortality. Since the artificial intelligence (AI)-enabled electrocardiogram (ECG) system is widely used in the management of many cardiovascular diseases (CVDs), patients requiring intensive monitoring may benefit from an AI-ECG with BNP/pBNP predictions. This study aimed to develop an AI-ECG to predict BNP/pBNP and compare their values for future mortality. METHODS: The development, tuning, internal validation, and external validation sets included 47,709, 16,249, 4001, and 6042 ECGs, respectively. Deep learning models (DLMs) were trained using a development set for estimating ECG-based BNP/pBNP (ECG-BNP/ECG-pBNP), and the tuning set was used to guide the training process. The ECGs in internal and external validation sets belonging to nonrepeating patients were used to validate the DLMs. We also followed-up all-cause mortality to explore the prognostic value. RESULTS: The DLMs accurately distinguished mild (≥500 pg/mL) and severe (≥1000 pg/mL) an abnormal BNP/pBNP with AUCs of ≥0.85 in the internal and external validation sets, which provided sensitivities of 68.0-85.0% and specificities of 77.9-86.2%. In continuous predictions, the Pearson correlation coefficient between ECG-BNP and ECG-pBNP was 0.93, and they were both associated with similar ECG features, such as the T wave axis and correct QT interval. ECG-pBNP provided a higher all-cause mortality predictive value than ECG-BNP. CONCLUSIONS: The AI-ECG can accurately estimate BNP/pBNP and may be useful for monitoring the risk of CVDs. Moreover, ECG-pBNP may be a better indicator to manage the risk of future mortality.

8.
Opt Lett ; 48(15): 4149-4152, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527140

RESUMEN

Ring skeleton vibrations of aromatic series are dominant in Raman spectroscopy compared with the C-H stretching vibrations. When a laser-induced plasma (LIP) was generated in a mixed solution of naphthalene and benzene, an anomalous enhancement was observed in stimulated Raman scattering (SRS) of aromatic C-H stretching vibrations of naphthalene (3055 cm-1). However, SRS of C-H stretching vibrations of benzene at 3060 cm-1 disappeared. The LIP produced electrons and cations, and the transient production of ionized material contributed to the enhancement of SRS of C-H vibrations of naphthalene. Density functional theory calculations showed that the C-H Raman activity of the naphthalene molecules in (naphthalene-benzene)+ heterodimer was significantly enhanced compared with neutral naphthalene. In addition, SRS pulse durations were better compressed in pure benzene and naphthalene due to the self-focusing effect.

9.
Digit Health ; 9: 20552076231191055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529539

RESUMEN

Objectives: Chest X-rays (CXRs) convey much illegible physiological information that deep learning model (DLM) has been reported interpreting successfully. Since the electrocardiogram age established by DLM was revealed as a heart biological marker, we hypothesize that CXR age has similar potential to describe the heart and lung states. Therefore, we developed a DLM to predict sex and age through CXR and analyzed its relation with future cardiovascular diseases (CVD). Methods: A total of 90,396 CXRs aged 20 to 90 were collected and separated into a development set with 53,102 CXRs and demographic information pairs, a tuning set with 7073 pairs, an internal validation set with 17,364 pairs, and an external validation set with 12,857 pairs. The study trained DLM with development set for estimating age and sex and compared them to actual information. Results: The mean absolute errors of predicted age were 4.803 and 4.313 years in the internal and external validation sets, respectively. The area under the curve of sex analysis was 0.9993 and 0.9988 in the internal and external validation sets, respectively. Patients whose CXR age was 5 years older than chronologic age lead to higher risk of all-cause mortality (hazard ratio (HR): 2.42, 95% confidence interval (CI): 2.00-2.92), cardiovascular (CV)-cause mortality (HR: 7.57, 95% CI: 4.55-12.60), new-onset heart failure (HR: 2.07, 95% CI: 1.56-2.76), new-onset chronic kidney disease (HR: 1.73, 95% CI: 1.46-2.05), new-onset acute myocardial infarction (HR: 1.80, 95% CI: 1.12-2.92), new-onset stroke (HR: 1.45, 95% CI: 1.10-1.90), new-onset coronary artery disease (HR: 1.26, 95% CI: 1.04-1.52), and new-onset atrial fibrillation (HR: 1.43, 95% CI: 1.01-2.02). Conclusions: Using DLM to predict CXR age provided additional information for future CVDs. Older CXR age is an accessible risk classification tool for clinician use.

10.
Digit Health ; 9: 20552076231187247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448781

RESUMEN

Background: The electrocardiogram (ECG) may be the most popular test in the management of cardiovascular disease (CVD). Although wide applications of artificial intelligence (AI)-enabled ECG have been developed, an integrating indicator for CVD risk stratification was not investigated. Since mortality may be the most important global outcome, this study aimed to develop a survival deep learning model (DLM) to establish a critical ECG value and explore the associations with various CVD events. Methods: We trained a DLM with 451,950 12-lead resting ECGs obtained from 210,552 patients, for whom 23,592 events occurred. The internal validation set included 27,808 patients with one ECG for each patient. The external validations were performed in a community hospital with 33,047 patients and two transnational data sets with 233,647 and 1631 ECGs. We distinguished the cause of mortality and additionally investigated CVD-related outcomes, including new-onset acute myocardial infarction (AMI), stroke (STK), and heart failure (HF). Results: The DLM achieved C-indices of 0.858/0.836 in internal/external validation sets by using ECG over a 10-year period. The high-mortality-risk group identified by the proposed DLM presented a hazard ratio (HR) of 14.16 (95% confidence interval (CI): 11.33-17.70) compared to the low-risk group in the internal validation and presented a higher risk of cardiovascular (CV) mortality (HR: 18.50, 95% CI: 9.82-34.84), non-CV mortality (HR: 13.68, 95% CI: 10.76-17.38), AMI (HR: 4.01, 95% CI: 2.24-7.17), STK (HR: 2.15, 95% CI: 1.70-2.72), and HF (HR: 6.66, 95% CI: 4.54-9.77), which was consistent in an independent community hospital. The transnational validation also revealed HRs of 4.91 (95% CI: 2.63-9.16) and 2.29 (95% CI: 2.15-2.44) for all-cause mortality in the SaMi-Trop and Clinical Outcomes in Digital Electrocardiography 15% (CODE15) cohorts. Conclusions: The mortality risk by AI-enabled ECG may be applied in passive electronic-health-record-based CVD risk screening, which may identify more asymptomatic and unaware high-risk patients.

11.
J Med Syst ; 47(1): 81, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523102

RESUMEN

Emergency department (ED) triage scale determines the priority of patient care and foretells the prognosis. However, the information retrieved from the initial assessment is limited, hindering the risk identification accuracy of triage. Therefore, we sought to develop a 'dynamic' triage system as secondary screening, using artificial intelligence (AI) techniques to integrate information from initial assessment data and subsequent examinations. This retrospective cohort study included 134,112 ED visits with at least one electrocardiography (ECG) and chest X-ray (CXR) in a medical center from 2012 to 2022. Additionally, an independent community hospital provided 45,614 ED visits as an external validation set. We trained an eXtreme gradient boosting (XGB) model using initial assessment data to predict all-cause mortality in 7 days. Two deep learning models (DLMs) using ECG and CXR were trained to stratify mortality risks. The dynamic triage levels were based on output from the XGB-triage and DLMs from ECG and CXR. During the internal and external validation, the area under the receiver operating characteristic curve (AUC) of the XGB-triage model was >0.866; furthermore, the AUCs of DLMs using ECG and CXR were >0.862 and >0.886, respectively. The dynamic triage scale provided a higher C-index (0.914-0.920 vs. 0.827-0.843) than the original one and demonstrated better predictive ability for 5-year mortality, 30-day ED revisit, and 30-day discharge. The AI-based risk scale provides a more accurate and dynamic stratification of mortality risk in ED patients, particularly in identifying patients who tend to be overlooked due to atypical symptoms.


Asunto(s)
Inteligencia Artificial , Servicio de Urgencia en Hospital , Humanos , Estudios Retrospectivos , Triaje/métodos , Electrocardiografía , Medición de Riesgo
12.
Comput Methods Programs Biomed ; 231: 107359, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738606

RESUMEN

BACKGROUND AND OBJECTIVE: Deep learning models (DLMs) have been successfully applied in biomedicine primarily using supervised learning with large, annotated databases. However, scarce training resources limit the potential of DLMs for electrocardiogram (ECG) analysis. METHODS: We have developed a novel pre-training strategy for unsupervised identity identification with an area under the receiver operating characteristic curve (AUC) >0.98. Accordingly, a DLM pre-trained with identity identification can be applied to 70 patient characteristic predictions using transfer learning (TL). These ECG-based patient characteristics were then used for cardiovascular disease (CVD) risk prediction. The DLMs were trained using 507,729 ECGs from 222,473 patients and validated using two independent validation sets (n = 27,824/31,925). RESULTS: The DLMs using our method exhibited better performance than directly trained DLMs. Additionally, our DLM performed better than those of previous studies in terms of gender (AUC [internal/external] = 0.982/0.968), age (correlation = 0.886/0.892), low ejection fraction (AUC = 0.942/0.951), and critical markers not addressed previously, including high B-type natriuretic peptide (AUC = 0.921/0.899). Additionally, approximately 50% of the ECG-based characteristics provided significantly more prediction information for cardiovascular risk than real characteristics. CONCLUSIONS: This is the first study to use identity identification as a pre-training task for TL in ECG analysis. An extensive exploration of the relationship between ECG and 70 patient characteristics was conducted. Our DLM-enhanced ECG interpretation system extensively advanced ECG-related patient characteristic prediction and mortality risk management for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Aprendizaje Profundo , Humanos , Electrocardiografía , Bases de Datos Factuales
13.
Eur Heart J Digit Health ; 4(1): 22-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36743876

RESUMEN

Aims: Deep learning models (DLMs) have shown superiority in electrocardiogram (ECG) analysis and have been applied to diagnose dyskalaemias. However, no study has explored the performance of DLM-enabled ECG in continuous follow-up scenarios. Therefore, we proposed a dynamic revision of DLM-enabled ECG to use personal pre-annotated ECGs to enhance the accuracy in patients with multiple visits. Methods and results: We retrospectively collected 168 450 ECGs with corresponding serum potassium (K+) levels from 103 091 patients as development samples. In the internal/external validation sets, the numbers of ECGs with corresponding K+ were 37 246/47 604 from 13 555/20 058 patients. Our dynamic revision method showed better performance than the traditional direct prediction for diagnosing hypokalaemia [area under the receiver operating characteristic curve (AUC) = 0.730/0.720-0.788/0.778] and hyperkalaemia (AUC = 0.884/0.888-0.915/0.908) in patients with multiple visits. Conclusion: Our method has shown a distinguishable improvement in DLMs for diagnosing dyskalaemias in patients with multiple visits, and we also proved its application in ejection fraction prediction, which could further improve daily clinical practice.

14.
Biol Trace Elem Res ; 201(1): 82-89, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35137281

RESUMEN

Osteoporosis has been recognized as a significant cause of disability in the elderly leading to heavy socioeconomic burden. Current measurements such as dual-energy X-ray absorptiometry (DEXA) and bone mineral density (BMD) have limitations. In contrast, trabecular bone score (TBS) is an emerging tool for bone quality assessment. The objective of our study was to investigate the relationship between TBS and trace elements (cadmium and lead). We analyzed all subjects from the 2005-2006 and 2007-2008 National Health and Nutrition Examination Survey (NHANES) dataset and included a total of 8,244 participants in our study; 49.4% of the enrolled subjects were male. We used blood cadmium (Cd) and lead (Pb) concentrations to define environmental exposure. The main variables were TBS and BMD. Other significant demographic features were included as covariates and later adjusted using linear regression models to determine the association between TBS and four quartiles based on the blood trace element concentrations with or without sex differences. The fully adjusted regression model revealed a negative relationship between TBS and blood cadmium (B-Cd) significant for both males and females (both p < 0.05). The ß-coefficient for males was -0.009 (95% confidence intervals (CI): (-0.015 to -0.004)) and -0.019 for female (95% CI: (-0.024 to -0.013)). We also found a dose-dependent relationship between TBS and B-Cd for both sexes (both trend's p < 0.05). Our study concluded that TBS could measure Cd-related bone quality deterioration for both males and females.


Asunto(s)
Hueso Esponjoso , Osteoporosis , Humanos , Masculino , Femenino , Anciano , Cadmio , Encuestas Nutricionales , Densidad Ósea , Absorciometría de Fotón/efectos adversos , Vértebras Lumbares
15.
Digit Health ; 8: 20552076221143249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532114

RESUMEN

Background: Artificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. Objective: The study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. Methods: The study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction ≤ 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. Results: The area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. Conclusion: The deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.

16.
J Clin Med ; 11(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555992

RESUMEN

Klotho is an anti-aging gene. Studies have revealed its association with insulin resistance. Visceral fat is related to insulin resistance, and the sagittal abdominal diameter (SAD) can serve as a biomarker for visceral fat (VF). This study investigated the association between SAD and serum Klotho concentration (SKC). We enrolled 2301 participants from the 2011−2012 National Health and Nutrition Examination Survey (NHANES) dataset, and 49.2% of the enrolled individuals were male. Qualified participants were separated into four quartiles according to the SAD value. SKC values were obtained by ELISA. Demographic characteristics, body mass index (BMI), systolic blood pressure, and biochemistry parameters with significance were analyzed using multivariate linear regression models. The mean age of the study participants was 57.22 ± 10.53 years. The fully adjusted regression model showed a negative association between SAD and SKC (p < 0.05), with a ß-coefficient of −12.02. We also analyzed subgroups of participants according to age and BMI. Participants with an age ≥65 and <65 years old were each negatively associated with SKC, and this association was significant for participants with a BMI ≥ 30 kg/m2 (p = 0.001, ß-coefficient: −18.83). We also found a concentration-dependent relationship between SAD and SKC. In conclusion, VF and SKC are associated, and SAD can serve as a surrogate of VF and an indicator of SKC.

17.
Front Med (Lausanne) ; 9: 899063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935796

RESUMEN

Aim: This investigation explored the relationship between oral bacteria and metabolic syndrome (METS). Materials and Methods: There were 4,882 subjects enrolled in this cross-sectional study from the NHANES III database. The severity of periodontitis was classified into mild, moderate and severe. We measured oral bacterial antibodies. We examined the relationship between serum immunoglobulin G (IgG) antibodies of oral bacteria and METS via performing multivariate regression analysis. Mediation analysis of oral bacteria on the correlation between periodontitis and METS was also executed. Results: After adjusting for covariates, the serum IgG antibodies of P. nigrescens, E. corrodens, and E. nodatum were associated with the presence of METS (p = 0.006, p = 0.014 and p = 0.018, respectively). Furthermore, serum IgG antibodies of P. intermedia, T. forsythia and V. parvula were positively associated with the presence of METS (p = 0.001, p = 0.011, and p = 0.002, respectively) and ≥4 features of METS (p = 0.019, p = 0.025, and p = 0.02, respectively). P. intermedia IgG mediated 11.2% of the relationship between periodontitis and METS. Conclusion: Serological markers of oral pathogens were correlated with the presence and the number of METS features after multivariable adjustment. Oral bacteria acted as a mediator of the correlation between periodontitis and METS. Our study provided a biologically plausible explanation for the association between periodontitis and METS, which provides a comprehensive evaluation of periodontitis.

18.
Front Med (Lausanne) ; 9: 846361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646999

RESUMEN

Background: Certain variables reportedly are associated with a change in left ventricular ejection fraction (LVEF) in heart failure (HF) with reduced ejection fraction (HFrEF). However, literature describing the association between the recovery potential of LVEF and parameters of ventricular remodeling in echocardiography remains sparse. Methods: We recruited 2,148 HF patients with LVEF < 35%. All patients underwent at least two echocardiographic images. The study aimed to compare LVEF alterations and their association with patient characteristics and echocardiographic findings. Results: Patients with "recovery" of LVEF (follow-up LVEF ≥ 50%) were less likely to have prior myocardial infarction (MI), had a higher prevalence of atrial fibrillation (Af), were less likely to have diabetes and hypertension, and had a smaller left atrium (LA) diameter, left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD), both in crude and in adjusted models (adjustment for age and sex). LVEDD cutoff values of 59.5 mm in men and 52.5 mm in women and LVESD cutoff values of 48.5 mm in men and 46.5 mm in women showed a year-to-year increase in the rate of recovery (follow-up LVEF ≥ 50%)/improvement (follow-up LVEF ≥ 35%), p-value < 0.05 in Kaplan-Meier estimates of the cumulative hazard curves. Conclusions: Our study shows that LVEDD and LVESD increments in echocardiography can be predictors of changes in LVEF in in HF patients with LVEF < 35%. They may be used to identify patients who require more aggressive therapeutic interventions.

19.
Front Cardiovasc Med ; 9: 895201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770216

RESUMEN

Background: Albumin, an important component of fluid balance, is associated with kidney, liver, nutritional, and cardiovascular diseases (CVD) and is measured by blood tests. Since fluid balance is associated with electrocardiography (ECG) changes, we established a deep learning model (DLM) to estimate albumin via ECG. Objective: This study aimed to develop a DLM to estimate albumin via ECG and explored its contribution to future complications. Materials and Methods: A DLM was trained for estimating ECG-based albumin (ECG-Alb) using 155,078 ECGs corresponding to albumin from 79,111 patients, and another independent 13,335 patients from an academic medical center and 11,370 patients from a community hospital were used for internal and external validation. The primary analysis focused on distinguishing patients with mild to severe hypoalbuminemia, and the secondary analysis aimed to provide additional prognostic value from ECG-Alb for future complications, which included mortality, new-onset hypoalbuminemia, chronic kidney disease (CKD), new onset hepatitis, CVD mortality, new-onset acute myocardial infarction (AMI), new-onset stroke (STK), new-onset coronary artery disease (CAD), new-onset heart failure (HF), and new-onset atrial fibrillation (Afib). Results: The AUC to identify hypoalbuminemia was 0.8771 with a sensitivity of 56.0% and a specificity of 90.7% in the internal validation set, and the Pearson correlation coefficient was 0.69 in the continuous analysis. The most important ECG features contributing to ECG-Alb were ordered in terms of heart rate, corrected QT interval, T wave axis, sinus rhythm, P wave axis, etc. The group with severely low ECG-Alb had a higher risk of all-cause mortality [hazard ratio (HR): 2.45, 95% CI: 1.81-3.33] and the other hepatorenal and cardiovascular events in the internal validation set. The external validation set yielded similar results. Conclusion: Hypoalbuminemia and its complications can be predicted using ECG-Alb as a novel biomarker, which may be a non-invasive tool to warn asymptomatic patients.

20.
Front Nutr ; 9: 817044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571885

RESUMEN

Background: Age-related muscle mass and function decline are critical issues that have gained attention in clinical practice and research. Nevertheless, little is known regarding the time course of muscle health progression, and its determinants during this transition should be estimated. Methods: We enrolled community-dwelling adults aged ≥65 years during their regular health checkup. The participants' body composition and muscle function were measured annually from 2015 to 2021. Presarcopenia was characterized by the loss of muscle mass only; dynapenia was defined as low muscle function without changes in muscle mass; and sarcopenia was indicated as a decline in both muscle mass and muscle function. We observed the natural course of muscle health progression during aging. The relationship between muscle health decline and different determinants among old adults was examined. Results: Among 568 participants, there was 18.49%, 3.52%, and 1.06% of healthy individuals transited to dynapenia, presarcopenia, and sarcopenia, respectively. Significant positive correlations between age, fat-to-muscle ratio (FMR) and the dynapenia transition were existed [hazard ratio (HR) = 1.08 and HR = 1.73, all p < 0.05]. Serum albumin level had negative correlation with the dynapenia transition risk (HR = 0.30, p = 0.004). Participants with these three risk factors had the highest HR of dynapenia transition compared to those without (HR = 8.67, p = 0.001). A dose-response effect existed between risk factors numbers and the risk of dynapenia transition (p for trend < 0.001). This positive association and dose-response relationship remains after multiple covariates adjustment (HR = 7.74, p = 0.002, p for trend < 0.001). Participants with two or more than two risk factors had a higher risk of dynapenia transition than those with low risk factors (p = 0.0027), and the HR was 1.96 after multiple covariate adjustment (p = 0.029). Conclusion: Healthy community-dwelling old adults tended to transit to dynapenia during muscle health deterioration. Individuals with older age, higher FMR, lower albumin level had a higher risk of dynapenia transition; and a positive dose-response effect existed among this population as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...