Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 41(9): 1621-1636.e8, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37595587

RESUMEN

Brain metastasis of lung cancer causes high mortality, but the exact mechanisms underlying the metastasis remain unclear. Here we report that vascular pericytes derived from CD44+ lung cancer stem cells (CSCs) in lung adenocarcinoma (ADC) potently cause brain metastases through the G-protein-coupled receptor 124 (GPR124)-enhanced trans-endothelial migration (TEM). CD44+ CSCs in perivascular niches generate the majority of vascular pericytes in lung ADC. CSC-derived pericyte-like cells (Cd-pericytes) exhibit remarkable TEM capacity to effectively intravasate into the vessel lumina, survive in the circulation, extravasate into the brain parenchyma, and then de-differentiate into tumorigenic CSCs to form metastases. Cd-pericytes uniquely express GPR124 that activates Wnt7-ß-catenin signaling to enhance TEM capacity of Cd-pericytes for intravasation and extravasation, two critical steps during tumor metastasis. Furthermore, selective disruption of Cd-pericytes, GPR124, or the Wnt7-ß-catenin signaling markedly reduces brain and liver metastases of lung ADC. Our findings uncover an unappreciated cellular and molecular paradigm driving tumor metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/secundario , beta Catenina , Neoplasias Encefálicas/secundario , Cadmio , Receptores de Hialuranos , Pulmón , Neoplasias Pulmonares/patología , Pericitos , Receptores Acoplados a Proteínas G
2.
Sci Transl Med ; 13(600)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193614

RESUMEN

Glioblastoma (GBM), a lethal primary brain tumor, contains glioma stem cells (GSCs) that promote malignant progression and therapeutic resistance. SOX2 is a core transcription factor that maintains the properties of stem cells, including GSCs, but mechanisms associated with posttranslational SOX2 regulation in GSCs remain elusive. Here, we report that DNA-dependent protein kinase (DNA-PK) governs SOX2 stability through phosphorylation, resulting in GSC maintenance. Mass spectrometric analyses of SOX2-binding proteins showed that DNA-PK interacted with SOX2 in GSCs. The DNA-PK catalytic subunit (DNA-PKcs) was preferentially expressed in GSCs compared to matched non-stem cell tumor cells (NSTCs) isolated from patient-derived GBM xenografts. DNA-PKcs phosphorylated human SOX2 at S251, which stabilized SOX2 by preventing WWP2-mediated ubiquitination, thus promoting GSC maintenance. We then demonstrated that when the nuclear DNA of GSCs either in vitro or in GBM xenografts in mice was damaged by irradiation or treatment with etoposide, the DNA-PK complex dissociated from SOX2, which then interacted with WWP2, leading to SOX2 degradation and GSC differentiation. These results suggest that DNA-PKcs-mediated phosphorylation of S251 was critical for SOX2 stabilization and GSC maintenance. Pharmacological inhibition of DNA-PKcs with the DNA-PKcs inhibitor NU7441 reduced GSC tumorsphere formation in vitro and impaired growth of intracranial human GBM xenografts in mice as well as sensitized the GBM xenografts to radiotherapy. Our findings suggest that DNA-PK maintains GSCs in a stem cell state and that DNA damage triggers GSC differentiation through precise regulation of SOX2 stability, highlighting that DNA-PKcs has potential as a therapeutic target in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Glioblastoma/radioterapia , Glioma/radioterapia , Animales , Neoplasias Encefálicas/genética , Diferenciación Celular , Línea Celular Tumoral , Ratones , Células Madre Neoplásicas , Factores de Transcripción SOXB1
3.
Nat Cancer ; 2(11): 1136-1151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35122055

RESUMEN

Glioblastoma (GBM) contains abundant tumor-associated macrophages (TAMs). The majority of TAMs are tumor-promoting macrophages (pTAMs), while tumor-suppressive macrophages (sTAMs) are the minority. Thus, reprogramming pTAMs into sTAMs represents an attractive therapeutic strategy. By screening a collection of small-molecule compounds, we find that inhibiting ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) with MK-8931 potently reprograms pTAMs into sTAMs and promotes macrophage phagocytosis of glioma cells; moreover, low-dose radiation markedly enhances TAM infiltration and synergizes with MK-8931 treatment to suppress malignant growth. BACE1 is preferentially expressed by pTAMs in human GBMs and is required to maintain pTAM polarization through trans-interleukin 6 (IL-6)-soluble IL-6 receptor (sIL-6R)-signal transducer and activator of transcription 3 (STAT3) signaling. Because MK-8931 and other BACE1 inhibitors have been developed for Alzheimer's disease and have been shown to be safe for humans in clinical trials, these inhibitors could potentially be streamlined for cancer therapy. Collectively, this study offers a promising therapeutic approach to enhance macrophage-based therapy for malignant tumors.


Asunto(s)
Glioblastoma , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Glioblastoma/tratamiento farmacológico , Humanos , Macrófagos/patología , Fagocitosis
4.
EMBO Mol Med ; 12(12): e12291, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33124191

RESUMEN

Nuclear matrix-associated proteins (NMPs) play critical roles in regulating chromatin organization and gene transcription by binding to the matrix attachment regions (MARs) of DNA. However, the functional significance of NMPs in glioblastoma (GBM) progression remains unclear. Here, we show that the Special AT-rich Binding Protein-2 (SATB2), one of crucial NMPs, recruits histone acetyltransferase CBP to promote the FOXM1-mediated cell proliferation and tumor growth of GBM. SATB2 is preferentially expressed by glioma stem cells (GSCs) in GBM. Disrupting SATB2 markedly inhibited GSC proliferation and GBM malignant growth by down-regulating expression of key genes involved in cell proliferation program. SATB2 activates FOXM1 expression to promote GSC proliferation through binding to the MAR sequence of FOXM1 gene locus and recruiting CBP to the MAR. Importantly, pharmacological inhibition of SATB2/CBP transcriptional activity by the CBP inhibitor C646 suppressed GSC proliferation in vitro and GBM growth in vivo. Our study uncovers a crucial role of the SATB2/CBP-mediated transcriptional regulation in GBM growth, indicating that targeting SATB2/CBP may effectively improve GBM treatment.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína Forkhead Box M1/genética , Regulación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Células Madre Neoplásicas/patología
5.
Neuro Oncol ; 22(12): 1809-1821, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-32592588

RESUMEN

BACKGROUND: The tumorigenic potential of glioma stem cells (GSCs) is associated with multiple reversible molecular alternations, but the role of posttranslational protein sumoylation in GSCs has not been elucidated. The development of GSC-targeting drugs relies on the discovery of GSC-preferential molecular modifications and the relevant signaling pathways. In this work, we investigated the protein sumoylation status, the major sumoylated substrate, and the key regulatory enzyme in GSCs to explore the therapeutic potential of disrupting protein sumoylation for glioblastoma (GBM) treatment. METHODS: Patient-derived GSCs, primary GBM sections, and intracranial GBM xenografts were used to determine protein sumoylation and the related molecular mechanisms by immunoblot, quantitative PCR, immunoprecipitation, immunofluorescence, and immunohistochemistry. Orthotopic GBM xenograft models were applied to investigate the inhibition of tumor growth by disrupting protein sumoylation with short hairpin (sh)RNAs or molecular inhibitors. RESULTS: We show that high levels of small ubiquitin-related modifier 1 (SUMO1)-but not SUMO2/3-modified sumoylation are preferentially present in GSCs. The promyelocytic leukemia (PML) protein is a major SUMO1-sumoylated substrate in GSCs, whose sumoylation facilitates its interaction with c-Myc to stabilize c-Myc proteins. The prolyl-isomerase Pin1 is preferentially expressed in GSCs and functions as the key enzyme to promote SUMO1 sumoylation. Disruption of SUMO1 sumoylation by Pin1 silencing with shRNAs or inhibition with its inhibitor Juglone markedly abrogated GSC maintenance and mitigated GSC-driven tumor growth. CONCLUSIONS: Our findings indicate that high SUMO1-modified protein sumoylation as a feature of GSCs is critical for GSC maintenance, suggesting that targeting SUMO1 sumoylation may effectively improve GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Células Madre Neoplásicas , Proteína SUMO-1 , Transducción de Señal , Sumoilación
6.
Nat Commun ; 11(1): 3015, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541784

RESUMEN

The interplay between glioma stem cells (GSCs) and the tumor microenvironment plays crucial roles in promoting malignant growth of glioblastoma (GBM), the most lethal brain tumor. However, the molecular mechanisms underlying this crosstalk are incompletely understood. Here, we show that GSCs secrete the Wnt-induced signaling protein 1 (WISP1) to facilitate a pro-tumor microenvironment by promoting the survival of both GSCs and tumor-associated macrophages (TAMs). WISP1 is preferentially expressed and secreted by GSCs. Silencing WISP1 markedly disrupts GSC maintenance, reduces tumor-supportive TAMs (M2), and potently inhibits GBM growth. WISP1 signals through Integrin α6ß1-Akt to maintain GSCs by an autocrine mechanism and M2 TAMs through a paracrine manner. Importantly, inhibition of Wnt/ß-catenin-WISP1 signaling by carnosic acid (CA) suppresses GBM tumor growth. Collectively, these data demonstrate that WISP1 plays critical roles in maintaining GSCs and tumor-supportive TAMs in GBM, indicating that targeting Wnt/ß-catenin-WISP1 signaling may effectively improve GBM treatment and the patient survival.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas CCN de Señalización Intercelular/genética , Glioma/genética , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Proteínas CCN de Señalización Intercelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Doxiciclina/farmacología , Glioma/metabolismo , Glioma/terapia , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
8.
Sci Transl Med ; 10(443)2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848664

RESUMEN

Glioblastoma (GBM) is the most lethal primary brain tumor and is highly resistant to current treatments. GBM harbors glioma stem cells (GSCs) that not only initiate and maintain malignant growth but also promote therapeutic resistance including radioresistance. Thus, targeting GSCs is critical for overcoming the resistance to improve GBM treatment. Because the bone marrow and X-linked (BMX) nonreceptor tyrosine kinase is preferentially up-regulated in GSCs relative to nonstem tumor cells and the BMX-mediated activation of the signal transducer and activator of transcription 3 (STAT3) is required for maintaining GSC self-renewal and tumorigenic potential, pharmacological inhibition of BMX may suppress GBM growth and reduce therapeutic resistance. We demonstrate that BMX inhibition by ibrutinib potently disrupts GSCs, suppresses GBM malignant growth, and effectively combines with radiotherapy. Ibrutinib markedly disrupts the BMX-mediated STAT3 activation in GSCs but shows minimal effect on neural progenitor cells (NPCs) lacking BMX expression. Mechanistically, BMX bypasses the suppressor of cytokine signaling 3 (SOCS3)-mediated inhibition of Janus kinase 2 (JAK2), whereas NPCs dampen the JAK2-mediated STAT3 activation via the negative regulation by SOCS3, providing a molecular basis for targeting BMX by ibrutinib to specifically eliminate GSCs while preserving NPCs. Our preclinical data suggest that repurposing ibrutinib for targeting GSCs could effectively control GBM tumor growth both as monotherapy and as adjuvant with conventional therapies.


Asunto(s)
Glioma/patología , Células Madre Neoplásicas/patología , Proteínas Tirosina Quinasas/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Tolerancia a Radiación , Factor de Transcripción STAT3/metabolismo , Adenina/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Receptor gp130 de Citocinas/metabolismo , Glioma/terapia , Janus Quinasa 2/metabolismo , Ratones , Modelos Biológicos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Piperidinas , Unión Proteica/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Análisis de Supervivencia , Temozolomida/farmacología , Temozolomida/uso terapéutico
9.
Cell Stem Cell ; 22(4): 514-528.e5, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625067

RESUMEN

Glioblastoma is the most lethal primary brain tumor; however, the crosstalk between glioblastoma stem cells (GSCs) and their supportive niche is not well understood. Here, we interrogated reciprocal signaling between GSCs and their differentiated glioblastoma cell (DGC) progeny. We found that DGCs accelerated GSC tumor growth. DGCs preferentially expressed brain-derived neurotrophic factor (BDNF), whereas GSCs expressed the BDNF receptor NTRK2. Forced BDNF expression in DGCs augmented GSC tumor growth. To determine molecular mediators of BDNF-NTRK2 paracrine signaling, we leveraged transcriptional and epigenetic profiles of matched GSCs and DGCs, revealing preferential VGF expression by GSCs, which patient-derived tumor models confirmed. VGF serves a dual role in the glioblastoma hierarchy by promoting GSC survival and stemness in vitro and in vivo while also supporting DGC survival and inducing DGC secretion of BDNF. Collectively, these data demonstrate that differentiated glioblastoma cells cooperate with stem-like tumor cells through BDNF-NTRK2-VGF paracrine signaling to promote tumor growth.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Progresión de la Enfermedad , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias Encefálicas/patología , Diferenciación Celular , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/patología
10.
Cell Stem Cell ; 21(5): 591-603.e4, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100012

RESUMEN

The blood-tumor barrier (BTB) is a major obstacle for drug delivery to malignant brain tumors such as glioblastoma (GBM). Disrupting the BTB is therefore highly desirable but complicated by the need to maintain the normal blood-brain barrier (BBB). Here we show that targeting glioma stem cell (GSC)-derived pericytes specifically disrupts the BTB and enhances drug effusion into brain tumors. We found that pericyte coverage of tumor vasculature is inversely correlated with GBM patient survival after chemotherapy. Eliminating GSC-derived pericytes in xenograft models disrupted BTB tight junctions and increased vascular permeability. We identified BMX as an essential factor for maintaining GSC-derived pericytes. Inhibiting BMX with ibrutinib selectively targeted neoplastic pericytes and disrupted the BTB, but not the BBB, thereby increasing drug effusion into established tumors and enhancing the chemotherapeutic efficacy of drugs with poor BTB penetration. These findings highlight the clinical potential of targeting neoplastic pericytes to significantly improve treatment of brain tumors.


Asunto(s)
Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Células Madre Neoplásicas/patología , Pericitos/patología , Adenina/análogos & derivados , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/ultraestructura , Permeabilidad Capilar/efectos de los fármacos , Glioma/ultraestructura , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Piperidinas , Pronóstico , Proteínas Tirosina Quinasas/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Análisis de Supervivencia , Uniones Estrechas/metabolismo , Resultado del Tratamiento
11.
Cancer Res ; 77(18): 4947-4960, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28729418

RESUMEN

Metabolic dysregulation drives tumor initiation in a subset of glioblastomas harboring isocitrate dehydrogenase (IDH) mutations, but metabolic alterations in glioblastomas with wild-type IDH are poorly understood. MYC promotes metabolic reprogramming in cancer, but targeting MYC has proven notoriously challenging. Here, we link metabolic dysregulation in patient-derived brain tumor-initiating cells (BTIC) to a nexus between MYC and mevalonate signaling, which can be inhibited by statin or 6-fluoromevalonate treatment. BTICs preferentially express mevalonate pathway enzymes, which we find regulated by novel MYC-binding sites, validating an additional transcriptional activation role of MYC in cancer metabolism. Targeting mevalonate activity attenuated RAS-ERK-dependent BTIC growth and self-renewal. In turn, mevalonate created a positive feed-forward loop to activate MYC signaling via induction of miR-33b. Collectively, our results argue that MYC mediates its oncogenic effects in part by altering mevalonate metabolism in glioma cells, suggesting a therapeutic strategy in this setting. Cancer Res; 77(18); 4947-60. ©2017 AACR.


Asunto(s)
Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/patología , Glioblastoma/patología , Ácido Mevalónico/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 8: 15080, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569747

RESUMEN

Intense infiltration of tumour-associated macrophages (TAMs) facilitates malignant growth of glioblastoma (GBM), but the underlying mechanisms remain undefined. Herein, we report that TAMs secrete abundant pleiotrophin (PTN) to stimulate glioma stem cells (GSCs) through its receptor PTPRZ1 thus promoting GBM malignant growth through PTN-PTPRZ1 paracrine signalling. PTN expression correlates with infiltration of CD11b+/CD163+ TAMs and poor prognosis of GBM patients. Co-implantation of M2-like macrophages (MLCs) promoted GSC-driven tumour growth, but silencing PTN expression in MLCs mitigated their pro-tumorigenic activity. The PTN receptor PTPRZ1 is preferentially expressed in GSCs and also predicts GBM poor prognosis. Disrupting PTPRZ1 abrogated GSC maintenance and tumorigenic potential. Moreover, blocking the PTN-PTPRZ1 signalling by shRNA or anti-PTPRZ1 antibody potently suppressed GBM tumour growth and prolonged animal survival. Our study uncovered a critical molecular crosstalk between TAMs and GSCs through the PTN-PTPRZ1 paracrine signalling to support GBM malignant growth, indicating that targeting this signalling axis may have therapeutic potential.


Asunto(s)
Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Glioblastoma/inmunología , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Animales , Células Cultivadas , Glioblastoma/metabolismo , Humanos , Ratones , Trasplante de Neoplasias , Comunicación Paracrina , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo
13.
Nat Neurosci ; 20(5): 661-673, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28346452

RESUMEN

Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.


Asunto(s)
Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Purinas/biosíntesis , Adenosina Monofosfato/biosíntesis , Proliferación Celular/fisiología , Células Cultivadas , Genómica , Glioma/enzimología , Glioma/metabolismo , Glucólisis/fisiología , Guanosina Monofosfato/biosíntesis , Humanos , Metabolómica , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/fisiología , Ribosa-Fosfato Pirofosfoquinasa/biosíntesis , Regulación hacia Arriba
14.
J Exp Med ; 214(1): 245-267, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923907

RESUMEN

Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A-c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc.


Asunto(s)
Neoplasias Encefálicas/patología , Endopeptidasas/fisiología , Proteínas F-Box/antagonistas & inhibidores , Glioblastoma/patología , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitinación , Línea Celular Tumoral , Proliferación Celular , Proteínas F-Box/fisiología , Humanos , Ubiquitina-Proteína Ligasas/fisiología , Proteasas Ubiquitina-Específicas
15.
Cell Death Differ ; 24(1): 167-180, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27740621

RESUMEN

Glioblastoma (GBM) is the most malignant and lethal brain tumor harboring glioma stem cells (GSCs) that promote tumor propagation and therapeutic resistance. GSCs preferentially express several critical cell surface molecules that regulate the pro-survival signaling for maintaining the stem cell-like phenotype. Tetraspanin CD9 has recently been reported as a GSC biomarker that is relevant to the GSC maintenance. However, the underlying molecular mechanisms of CD9 in maintaining GSC property remain elusive. Herein, we report that CD9 stabilizes the IL-6 receptor glycoprotein 130 (gp130) by preventing its ubiquitin-dependent lysosomal degradation to facilitate the STAT3 activation in GSCs. CD9 is preferentially expressed in GSCs of human GBM tumors. Mass spectrometry analysis identified gp130 as an interacting protein of CD9 in GSCs, which was confirmed by immunoprecipitation and immunofluorescent analyses. Disrupting CD9 or gp130 by shRNA significantly inhibited the self-renewal and promoted the differentiation of GSCs. Moreover, CD9 disruption markedly reduced gp130 protein levels and STAT3 activating phosphorylation in GSCs. CD9 stabilized gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote the BMX-STAT3 signaling in GSCs. Importantly, targeting CD9 potently inhibited GSC tumor growth in vivo, while ectopic expression of the constitutively activated STAT3 (STAT3-C) restored the tumor growth impaired by CD9 disruption. Collectively, we uncovered a critical regulatory mechanism mediated by tetraspanin CD9 to maintain the stem cell-like property and tumorigenic potential of GSCs.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Células Madre Neoplásicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Tetraspanina 29/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Receptor gp130 de Citocinas/antagonistas & inhibidores , Receptor gp130 de Citocinas/genética , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Inmunoprecipitación , Estimación de Kaplan-Meier , Lisosomas/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Microscopía Fluorescente , Células Madre Neoplásicas/citología , Péptidos/análisis , Péptidos/química , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Tetraspanina 29/antagonistas & inhibidores , Tetraspanina 29/genética , Trasplante Heterólogo , Ubiquitinación
16.
J Clin Invest ; 126(7): 2757-72, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27322055

RESUMEN

Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor-initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Glioblastoma/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , División Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Proteómica/métodos , Receptores Notch/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal
17.
Oncotarget ; 6(35): 37300-15, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26510911

RESUMEN

Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significantly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Nucleares/metabolismo , Óxidos/farmacología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Trióxido de Arsénico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones Endogámicos C57BL , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/trasplante , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Esferoides Celulares , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cell Mol Life Sci ; 72(18): 3411-24, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25967289

RESUMEN

Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias/terapia , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
Nat Neurosci ; 18(4): 501-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25730670

RESUMEN

Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.


Asunto(s)
Neoplasias Encefálicas/metabolismo , GTP Fosfohidrolasas/metabolismo , Glioblastoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Células Madre Neoplásicas/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Dinaminas , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Mitocondrias/ultraestructura , Proteínas Mitocondriales/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Pronóstico
20.
Nat Cell Biol ; 17(2): 170-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580734

RESUMEN

Tumour-associated macrophages (TAMs) are enriched in glioblastoma multiformes (GBMs) that contain glioma stem cells (GSCs) at the apex of their cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role for TAMs in tumour progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumour growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumour-supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through the integrin αvß3 as blocking this signalling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/sangre , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Factores Quimiotácticos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Glioblastoma/sangre , Humanos , Integrina alfaVbeta3/metabolismo , Mediciones Luminiscentes , Ratones Endogámicos C57BL , Monocitos/metabolismo , Células Madre Neoplásicas/patología , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...