Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-30841572

RESUMEN

Wetland plants that cover the wetlands play an important role in reducing pollutants. The aim of this study was to investigate the effect of two plant species on microbial communities and nitrogen-removal genes and to evaluate the contributions of absorbing pollutants by Canna indica (CI) and Cyperus alternifolius (CA) to the removal performance in both a vertical subsurface flow constructed wetland and a horizontal subsurface flow constructed wetland, which were part of a full-scale hybrid constructed wetland system. The microbial assemblages were determined using 16S rRNA high-throughput sequencing. Results showed that the presence of CI and CA positively affected microbial abundance and community in general and which was positive for the total bacteria and ammonia nitrogen removal in the CWs. The higher abundance of Nitrospirae appeared in the non-rhizosphere sediment (NRS) than that in the rhizosphere sediment (RS). More denitrification genes were found in NRS than in RS. The copy numbers of narG, nirS and nosZ genes for CA were higher than those for CI. Wetland plant species can significantly (P < 0.05) affect the distribution of microbial communities in RS. Plant selection is important to promote the development of microbial communities with a more active and diverse catabolic capability and the contribution of plant absorption to the overall removal rate of wetland system can be neglected.


Asunto(s)
Cyperus/química , Microbiota , Eliminación de Residuos Líquidos/métodos , Contaminantes del Agua/química , Humedales , Zingiberales/química , Amoníaco/química , Amoníaco/metabolismo , Bacterias/genética , Bacterias/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , ARN Ribosómico 16S , Rizosfera , Contaminantes del Agua/metabolismo
3.
Huan Jing Ke Xue ; 39(1): 256-262, 2018 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-29965690

RESUMEN

Nitrogen removal, extracellular polymeric substances (EPS), and the chemical composition (protein (PN), polysaccharide (PS), and DNA) by the aerobic/anoxic (O/A) and the anoxic/aerobic (A/O) modes were studied in a sequencing batch reactor (SBR) fed with domestic wastewater. The results showed that the removal rates of NH4+-N were 97.5% and 98.0% in the two operating modes, respectively, and a removal efficiency of NH4+-N with high efficiency and stability was obtained. The nitrification rate was positively correlated with the nitrogen loading ratio. The influence of operating modes for the alternating anoxic/oxic mode on extracellular polymeric substances of activated sludge was evaluated. The EPS constituent in the A/O mode was slightly higher than the O/A mode. The operating mode had no effect on the contents of PN, PS, and DNA in tightly bound EPS (TB-EPS) and TB-EPS. However, PN and PS in loosely bound EPS (LB-EPS) and LB-EPS in the A/O mode were 1.38 to 1.56 times those of the O/A mode. In the two operating modes, PSs were the main constituents in the TB-EPS and EPS, while PNs were the main constituents in LB-EPS. The EPS content had a good linear correlation with the sludge settling performance.


Asunto(s)
Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas , Nitrificación , Nitrógeno/aislamiento & purificación , Aguas del Alcantarillado , Aguas Residuales
4.
Huan Jing Ke Xue ; 38(11): 4648-4655, 2017 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-29965409

RESUMEN

In this paper, the long-term effects of temperature on the nitrogen removal performance and the extracellular polymeric substance (EPS) in a sequencing batch reactor (SBR) treating synthetic wastewater was investigated under three temperature conditions (15℃, 25℃, 35℃). The results showed that high temperatures (35℃) could promote the establishment of short-cut nitrification processes and improve nitrogen removal performance greatly. Temperature had a significant impact on the EPS and its composition. With an increased temperature, the EPS and tightly bound EPS (TB-EPS) content decreased, while, loosely bound EPS (LB-EPS) increased slowly. TB-EPS became dominant in the EPS (the percentage of TB-EPS/EPS was 69.0%-79.5%), however, the ratio of TB-EPS/LB-EPS decreased from 3.8 (15℃) to 3.6 (25℃), and then to 2.2 (35℃) with a gradual increase in temperature. Moreover, protein (PN) and DNA in the EPS, TB-EPS, and LB-EPS decreased with an increasing temperature. Carbohydrates (PS) in the EPS and LB-EPS increased as temperature increased, nevertheless, PS in TB-EPS decreased. Furthermore, 25℃ was identified as the breaking-point temperature in the variation of PN, DNA and PS concentrations. At 15℃ and 25℃, PN was the main component in TB-EPS and LB-EPS. PS has the second highest concentration and DNA the least. However, PS were the dominant component at 35℃, with PN having the second highest concentration, and DNA having a subtle concentration. Moreover, at 15℃ and 25℃, the EPS content increased in the nitrification process and reduced in the denitrification process.


Asunto(s)
Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas/química , Nitrificación , Nitrógeno/aislamiento & purificación , Temperatura , Desnitrificación , Aguas del Alcantarillado , Purificación del Agua
5.
Huan Jing Ke Xue ; 37(3): 1075-81, 2016 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-27337903

RESUMEN

Three sequencing batch reactors (SBRs) labeled with R(Ahead), R(Exact) and R(Exceed) were employed to investigate the synergetic inhibition effect of free ammonia (FA) and length of aeration phase on the activity of ammonia-oxidizing bacteria ( AOB) and nitrite- oxidizing bacteria (NOB) after shortcut nitritation was achieved in the systems. The experiments were conducted under the conditions of three FA concentrations (0.5, 5. 1, 10.1 mg · L⁻¹) combined with three kinds of aeration time (t(Exact): the time when ammonia oxidation was completed; t(Ahead): 30 min ahead of the time when ammonia oxidation was completed; t(Exceed): 30 min exceeded when the time ammonia oxidation was completed). It was found that short-cut nitrification could be successfully established in three reactors with a FA level of 10.1 mg · L⁻¹. Meanwhile, the speed of achieving nitritation was in the sequence of R(Ahead) > R(Exact) > R(Exceed) with operational cycles of 56, 62 and 72, respectively. Compared to AOB, NOB in the three reactors was observed to be more sensitive to FA, resulting in AOB activity higher than NOB activity throughout the whole experimental period. Moreover, there was great difference in the activity coefficient ( η) between AOB and NOB. The activity coefficients of AOB were in the order of η(RExact) > η(RExceed) > η(RAhead) with the values of 104.4%, 100% and 85.8%, respectively. Nevertheless, the activity coefficients of NOB were in the order of η(RExceed) > η(RExact) > η(RAhead) with the values of 71.2%, 64.9% and 50.2%, respectively.


Asunto(s)
Amoníaco/química , Bacterias/metabolismo , Nitrificación , Reactores Biológicos , Nitritos/química , Oxidación-Reducción
6.
Appl Microbiol Biotechnol ; 100(15): 6917-6926, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27100531

RESUMEN

Microorganisms play a key role in removal of pollutants in constructed wetlands (CWs). The aim of this study was to investigate the composition and diversity of microbes in a full-scale integrated constructed wetland system and examine how microbial assemblages were shaped by the structures and physicochemical properties of the sediments. The microbial assemblages were determined using 16S rRNA high-throughput sequencing. Results showed that the microbial phenotypes were more diverse in the system than in single CWs. The genera of Zoogloea, Comamonas, Thiobacillus, Nitrosospira, Denitratisoma, Azonexus, and Azospira showed relatively high abundances, which contributed to the removal of organic matter and nitrogen. The interactions among the three CWs in series acted a key role in the increase of phylogenetic diversity and high percentage of shared operational taxonomic units. In the system, some core microbes always existed even with the changing environment. Redox potential and NH4-N were the important factors affecting the overall microbial community patterns. Total organic carbon had a relatively high impact on some denitrifiers. The results from this study should be useful to better understand the microbial mechanism of wastewater treatment in integrated constructed wetland systems.


Asunto(s)
Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Aguas Residuales/microbiología , Microbiología del Agua , Archaea/genética , Bacterias/genética , Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Humedales
7.
J Environ Sci (China) ; 24(12): 2180-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23534216

RESUMEN

Sulfated BiWO (SBiWO) was synthesized by an impregnation method to enhance the visible-light-driven photoactivities of BiWO (BiWO). The characterization results verified that sulfate anion mainly anchored on the catalyst surface greatly extended the visible-light-responsive range without destroying the crystal lattice. Moreover, the SBiWO-based photoactivities were evaluated with the removal of Malachite Green (MG) under UV-Vis irradiation emitted from two microwave-powered electrodeless discharge lamps (MPEDL2) and under visible light (lamda > 420 nm). The results demonstrated that the kinetic constant was increased 2.25 times, varying from 0.1478 (BiWO) to 0.3328 min(-1) (SBiWO-1). Similar results were also obtained for the visible light-driven reaction. Furthermore, radical scavengers such as t-butanol restricted the visible-light induced degradation of MG over BiWO and SBiWO-1. This indicated that the sulfating process increased the generation of reactive oxygen species, which was further verified by molecular probe with salicylic acid. Thus, more blue-shifting at lam = 618 nm was observed over SBiWO. On the basis of the above results, the photocatalytic mechanism over the sulfated catalyst was also discussed.


Asunto(s)
Bismuto/química , Contaminantes Ambientales/química , Fotólisis , Colorantes de Rosanilina/química , Ésteres del Ácido Sulfúrico/síntesis química , Catálisis , Contaminantes Ambientales/efectos de la radiación , Colorantes de Rosanilina/efectos de la radiación , Rayos Ultravioleta
8.
Chemosphere ; 82(3): 321-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21074242

RESUMEN

The Zn/Cd hyperaccumulator Arabis paniculata is able to tolerate high level of Zn and Cd. To clarify the molecular basis of Zn and Cd tolerance, proteomic approaches were applied to identify proteins involved in Zn and Cd stress response in A. paniculata. Plants were exposed to both low and high Zn or Cd levels for 10 d. Proteins of leaves in each treatment were separated by 2-DE (two-dimensional electrophoresis). Nineteen differentially-expressed proteins upon Zn treatments and 18 proteins upon Cd treatments were observed. Seventeen out of 19 of Zn-responsive proteins and 16 out of 18 of Cd-responsive proteins were identified using MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry). The most of identified proteins were known to function in energy metabolism, xenobiotic/antioxidant defense, cellular metabolism, protein metabolism, suggesting the responses of A. paniculata to Zn and Cd share similar pathway to certain extend. However, the different metal defense was also revealed between Zn and Cd treatment in A. paniculata. These results indicated that A. paniculata against to Zn stress mainly by enhancement of energy metabolism including auxin biosynthesis and protein metabolism to maintain plant growth and correct misfolded proteins. In the case of Cd, plants adopted antioxidative/xenobiotic defense and cellular metabolism to keep cellular redox homeostasis and metal-transportation under Cd stress.


Asunto(s)
Arabis/metabolismo , Cadmio/toxicidad , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Adaptación Fisiológica , Arabis/efectos de los fármacos , Proteoma/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
9.
Int J Phytoremediation ; 8(4): 299-310, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17305304

RESUMEN

The ability of Potentilla griffithii Hook var. velutina Cardot to hypaeraccumulate zinc (Zn) was identified through field survey and hydroponic experiments. Our results showed that P. griffithii could be classified as a new Zn hyperaccumulator. Zn concentrations in the shoots of P. griffithii averaged 6250 mg kg(-1) (3870-8530 mg kg(-1)) growing in Zn-rich soils. The highest Zn concentration was observed in the leaves of P. griffithii at 22,990 mg kg(-1). The fact that P. griffithii was able to grow in a mining soil with a Zn concentration of 193,000 mg kg(-1) without showing a major sign of phytotoxicity demonstrated its high tolerance to Zn. When growing in hydroponic systems, P. griffithii accumulated a maximum 26700 mg kg(-1) zinc concentration in the shoots, indicating the ability of this species to effectively take up and translocate Zn. Translocation factors (the ratio of Zn concentration in shoot to root) of 1.1 to 1.6 were obtained. Compared to the control, dry biomass of P. griffithii in 160 mg L(-1) Zn treatment increased 66.6% (P < 0.05). The time-course experiment showed that the maximum Zn concentration at 100 mg L(-1) Zn treatment was found at 16 d, much later than that of the 10 mg L(-1) Zn treatment, which might be an attribution of a accumulating mechanism or detoxification of a plant. The report of a new Zn hyperaccumulator provides a new plant species for the phytoremediation of contaminated soil and for the research on mechanisms of Zn hyperaccumulation in plants.


Asunto(s)
Potentilla/metabolismo , Contaminantes del Suelo/farmacocinética , Zinc/farmacocinética , Biodegradación Ambiental , Humanos , Residuos Industriales/prevención & control , Minería , Raíces de Plantas , Brotes de la Planta , Potentilla/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...