Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169913, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185167

RESUMEN

This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.


Asunto(s)
Nitratos , Humedales , Desnitrificación , Amoníaco , Biomasa , Carbono , Hierro , Nitrógeno/análisis , Eliminación de Residuos Líquidos
2.
Bioresour Technol ; 386: 129565, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506926

RESUMEN

Excessive waste-activated sludge (WAS) and insufficient carbon source (CS) for biological nitrogen removal (BNR) often coexist in municipal sewage treatment. Although the production of volatile fatty acids (VFAs) from WAS has been recognized as a promising solution, the development is limited by low VFAs production efficiency and dewatering deterioration of sludge. This study extracted the extracellular polymeric substances (EPS) from sludge by low-temperature thermal-hydrolysis (LTH) and high-speed hydro-cyclone (HSHC) pretreatment and recovered it for high-quality VFAs bio-production in thermophilic fermentation. Microbial mechanism analysis disclosed that interspecific interaction networks composed of functional flora, which accumulate VFAs by bio-converting EPS primarily and supplemented by EPS synthesis, guaranteed the efficient bio-production of VFAs. This process scheme shows promise in providing alternative denitrification CSs and avoiding deterioration of sludge dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Carbono , Concentración de Iones de Hidrógeno , Fermentación , Ácidos Grasos Volátiles
3.
Environ Res ; 231(Pt 1): 116047, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37149031

RESUMEN

In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.


Asunto(s)
Desnitrificación , Electrones , Azufre , Procesos Autotróficos , Sulfuros , Reactores Biológicos , Nitrógeno
4.
Water Res ; 226: 119258, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272196

RESUMEN

Constructed wetlands (CWs) integrated with sulfur autotrophic denitrification to stimulate high-rate nitrogen removal from carbon-limited wastewater holds particular application prospect due to no excessive carbon source addition, high efficiency, and good stability. In this study, we conducted elemental sulfur-based constructed wetland (SCW) and traditional constructed wetland (CW) under different C/N (2, 1, and 0.5) to explore the feasibility and mechanisms for nitrogen removal from low C/N wastewater. Compared with CW, SCW was demonstrated more robust in nitrogen removal in the case of low C/N influent. When the influent C/N control was at 0.5, SCW observed total nitrogen (TN) and nitrate removal efficiency of 69.36 ± 3.96% and 81.71 ± 3.96%, with the corresponding removal rate of 1.18 ± 0.66 and 1.70 ± 0.92 g-N·m-2·d-1, which were 2.11 and 10.03 times of CW, respectively. The nitrate removal rate constant k in the SCW was 1.05, 3.83, and 10.33 times higher than the CW with C/N of 2, 1 and 0.5. Furthermore, 14.40, 54.51, and 79.82% of nitrogen were removed by the sulfur autotrophic denitrification (SAD) in SCW, which also contributed 43.89, 73.68, and 71.70% of sulfate production. Moreover, the combined system of CW-SCW is proved be an efficient operation mode for simultaneously removing total ammonia nitrogen (TAN) and nitrate. In the SCW, the richness of the microbial community was improved and sulfur-oxidizing genera (e.g. Thiobacillus, Sulfurimonas) was selectively enriched, which affect the performance the elemental sulfur-based denitrification process. The nitrate reduction pathway was overwhelmed by denitrification and the dissimilatory nitrate reduction process. These findings offer elemental sulfur-based autotrophic denitrification constructed wetland has excellent potential to enhance nitrogen removal from carbon-limited wastewater.


Asunto(s)
Aguas Residuales , Humedales , Desnitrificación , Nitrógeno/análisis , Nitratos , Reactores Biológicos , Procesos Autotróficos , Azufre , Carbono
5.
Water Res ; 217: 118433, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429886

RESUMEN

Constructed wetlands (CWs) integrated with the bioelectrochemical system (BES-CW) to stimulate bio-refractory compounds removal holds particular promise, owing to its inherent greater scale and well-recognized environmentally benign wastewater advanced purification technology. However, the knowledge regarding the feasibility and removal mechanisms, particularly the potential negative effects of biorefractory compounds on nitrogen removal performance for the CWs is far insufficient. This study performed a critical assessment by using BES-CW (ECW) and conventional CW (CW) to investigate the effects of p-Chloronitrobenzene (pCNB) on nitrogen transformations in CWs. The results showed that low concentration (1 mg·L-1) of pCNB would inhibit the ammonia oxidation in CWs, while ECW could improve its tolerance to pCNB to a certain level (8 mg·L-1) due to the high pCNB degradation efficiencies (2.5 times higher than CWs), accordingly, much higher TN and nitrate removal efficiencies were observed in ECWs, 81.71% - 96.82% (TN) higher than CWs, further leading to a lower N2O emission from ECWs than CWs. The main intermediate of pCNB degradation was p-Chloroaniline (pCAN) and the genera Geobacter and Propionimicrobium were consider to be the responsible pCNB degradation bacteria in the present study. However, too high concentration (20 mg·L-1) of pCNB would have a huge impact on ECW and CW, especially microbial biomass. Nevertheless, ECW could improve the 1.87 times higher microbial biomass than CW on the substrate. Accordingly, considerably higher functional gene abundance was observed in ECW. Therefore, the introduction of BES has great potential to ensure CW stability when treating industrial wastewater containing bio-refractory compounds.


Asunto(s)
Nitrógeno , Humedales , Nitrobencenos , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
6.
Bioresour Technol ; 322: 124430, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383476

RESUMEN

Biochar was utilized to intensify constructed wetland (CW) for further organic and nitrogen removal from secondary wastewater. Four sets of non-aerated biochar amended vertical flow CW (VFCW) were developed to investigate the synergistic effects of biochar and microbes on pollutant removal. Results showed that the average COD and nitrogen removal efficiencies of VFCW1 (with 1% w/w biochar with microbe and plants) achieved 89.1 ± 5.6% and 90.2 ± 3.1% respectively, and their corresponding removal rates of 10.2 ± 0.8 mg-COD/(m3.d) and 3.57 ± 0.3 mg-TN/(m3.d) which were 35 and 52.3% higher than control. The biochar's dissolved organic carbon release in VFCWs indicated that water and acidic media portray the optimum conditions for nitrogen removal. The 16S RNA gene sequencing analysis indicated that in the biochar-amended VFCWs, bacterial phylum Proteobacteria (24.13-51.95%) followed by Chloroflexi (5.64-25.01%), Planctomycetes (8.48-14.43%), Acidobacteria (2.29-11.65%) were abundantly enhanced. Conclusively, incorporating biochar in non-aerated VFCWs is an efficient technique for enhancing nitrogen removal from secondary effluent.


Asunto(s)
Microbiota , Humedales , Carbono , Carbón Orgánico , Desnitrificación , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
7.
Appl Microbiol Biotechnol ; 102(22): 9843-9855, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30191289

RESUMEN

The effects of hydraulic retention time (HRT) on the performance of algal-bacterial-based aquaponics (AA) were investigated in this study. Both the highest fish growth and algal biomass increase were observed in the AA system at 2-day HRT, resulting in the highest nitrogen utilization efficiency (NUE) (39.28%) in this microcosm. On the contrary, ammonia oxidation bacteria (AOB) abundance at 4-day HRT was approximately ten times higher than that at 2-day HRT, since longer HRT would benefit bacterial growth. The 15N labeling study showed that microalgae assimilation was the main pathway of NH4+ removal in the AA system, and oxygen produced by microalgae could in situ support complete nitrification, thus leading to much lower NH4+ concentrations at 2-day HRT. Accordingly, better water quality was achieved at 2-day HRT. Considering all the factors, HRT of 2-day was considered to be optimal for the AA system.


Asunto(s)
Bacterias/metabolismo , Microalgas/metabolismo , Nitrógeno/química , Oxígeno/química , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Animales , Bacterias/química , Bacterias/crecimiento & desarrollo , Reactores Biológicos/microbiología , Explotaciones Pesqueras , Peces/crecimiento & desarrollo , Agua Dulce/química , Agua Dulce/microbiología , Cinética , Microalgas/química , Nitrógeno/metabolismo , Oxígeno/metabolismo , Factores de Tiempo , Calidad del Agua
8.
Bioresour Technol ; 245(Pt A): 358-364, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28898831

RESUMEN

Aquaponics is a promising technology combining aquaculture with hydroponics. In this study, algal-bacterial consortia were introduced into aquaponics, i.e., algal-bacterial based aquaponics (AA), to improve the nitrogen utilization efficiency (NUE) of aquaponics. The results showed that the NUE of AA was 13.79% higher than that of media-based aquaponics (MA). In addition, higher NO3- removal by microalgae assimilation led to better water quality in AA, which made up for the deficiencies of poor aquaponic management of nitrate. As a result of lower NO3- concentrations and dramatically higher dissolved oxygen (DO) concentrations caused by microalgae photosynthesis in the photobioreactor, the N2O emission of AA was 89.89% lower than that of MA, although nosZ gene abundance in MA's hydroponic bed was approximately 30 times over that in AA. Considering the factors mentioned above, AA would improve the sustainability of aquaponics and have a good application foreground.


Asunto(s)
Acuicultura , Nitrógeno , Bacterias , Hidroponía , Nitratos
9.
J Agric Food Chem ; 65(40): 8806-8812, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28920675

RESUMEN

N2O production in aquaponics is an inevitable concern when aquaponics is developed as a future production system. In the present study, two attempts were applied to mitigate N2O emission from aquaponics, i.e., aeration in hydroponic bed (HA) and addition of polylactic acid (PLA) into fillers (PA). Results showed that N2O emission from HA and PA was decreased by 47.1-58.1% and 43.2-74.9% respectively compared with that in control. Denitrification was proved to be the main emission pathway in all treatments, representing 62.4%, 86.4%, and 75.8% of the total N2O emission in HA, PA, and control, respectively. However, production of plants in HA was severely impaired, which was only 3.04 ± 0.39 kg/m2, while in PA and control, plants yields were 4.87 ± 0.56 kg/m2 and 4.33 ± 0.58 kg/m2. Combining the environmental and economic benefits, adding PLA in aquaponics may have a better future when developing and applying aquaponics systems.


Asunto(s)
Brassica/metabolismo , Hidroponía/métodos , Nitrógeno/química , Óxido Nitroso/química , Poliésteres/metabolismo , Brassica/crecimiento & desarrollo , Carbono/química , Carbono/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Desnitrificación , Hidroponía/instrumentación , Nitrificación , Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Poliésteres/química
10.
Bioresour Technol ; 210: 81-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26783143

RESUMEN

To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed.


Asunto(s)
Acuicultura/métodos , Hidroponía/métodos , Nitrógeno/análisis , Bacterias/genética , Bacterias/metabolismo , Dosificación de Gen , Concentración de Iones de Hidrógeno , Óxido Nitroso/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA