Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eadj5407, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862410

RESUMEN

Stretchable polymeric fibers have enormous potential, but their production requires rigorous environmental controls and considerable resource consumption. It's also challenging for elastic polymers with high performance but poor spinnability, such as silicones like polydimethylsiloxane and Ecoflex. We present a hydrogel-assisted microfluidic spinning (HAMS) method to address these challenges by encapsulating their prepolymers within arbitrarily long, protective, and sacrificable hydrogel fibers. By designing simple apparatuses and manipulating the fluidic and interfacial self-adaptations of oil/water flows, we successfully produce fibers with widely controllable diameter (0.04 to 3.70 millimeters), notable length, high quality (e.g., smooth surface, whole-length uniformity, and rounded section), and remarkable stretchability (up to 1300%) regardless of spinnability. Uniquely, this method allows an easy, effective, and controllable reshaping production of helical fibers with exceptional stretchability and mechanical compliance. We deeply reveal the mechanisms in producing these fibers and demonstrate their potential as textile components, optoelectronic devices, and actuators. The HAMS method would be a powerful tool for mass-producing high-quality stretchable fibers.

2.
Opt Lett ; 48(10): 2756-2759, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186758

RESUMEN

Learning from nature in terms of the camouflage used by species has enabled the continuous development of camouflage technologies for the visible to mid-infrared bands to prevent objects from being detected by sophisticated multispectral detectors, thereby avoiding potential threats. However, achieving visible and infrared dual-band camouflage without destructive interference while also realizing rapidly responsive adaptivity to the varying background remains challenging for high-demand camouflage systems. Here, we report a reconfigurable mechano-responsive soft film for dual-band camouflage. Its modulation ranges for visible transmittance and longwave infrared emittance can be up to 66.3% and 21%, respectively. Rigorous optical simulations are performed to elucidate the modulation mechanism of dual-band camouflage and identify the optimal wrinkles required to achieve the goal. The broadband modulation capability (figure of merit) of the camouflage film can be as high as 2.91. Other advantages, such as simple fabrication and a fast response, make this film a potential candidate for dual-band camouflage that can adapt to diverse environments.

3.
ACS Nano ; 16(12): 20251-20262, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36520674

RESUMEN

High relative permittivity and low dielectric loss are two desired parameters of a triboelectric layer to enhance its mechanical-to-electrical energy conversion efficiency in a triboelectric nanogenerator (TENG). However, the elevated permittivity of the triboelectric layer is always accompanied by increasing dielectric loss, limiting further improvement or even reducing the electrical output. Herein, we report a method for improving the relative permittivity and suppressing the dielectric loss of the triboelectric layer via nanoscale design at the particle-polymer interface. When incorporated with 2 wt % Ag@C, the triboelectric-layer-enhanced TENG (TLE-TENG) presents a 2.6-fold increment in relative permittivity and a 302% current enhancement. An instantaneous peak power density of 1.22 W m-2, an excellent pressure sensitivity of 90.95 V kPa-1, and an optimized sheet resistance (∼0.14 Ω/sq) are attributes of this greatly enhanced device. Such improvements bode well for the implementation of these enhancing strategies to help position TLE-TENGs as pervasive and sustainable power sources and active self-powered sensors in the era of the Internet of Things.

4.
Adv Mater ; 34(24): e2200252, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35306703

RESUMEN

Wearable respiratory monitoring is a fast, non-invasive, and convenient approach to provide early recognition of human health abnormalities like restrictive and obstructive lung diseases. Here, a computational fluid dynamics assisted on-mask sensor network is reported, which can overcome different user facial contours and environmental interferences to collect highly accurate respiratory signals. Inspired by cribellate silk, Rayleigh-instability-induced spindle-knot fibers are knitted for the fabrication of permeable and moisture-proof textile triboelectric sensors that hold a decent signal-to-noise ratio of 51.2 dB, a response time of 0.28 s, and a sensitivity of 0.46 V kPa-1 . With the assistance of deep learning, the on-mask sensor network can realize the respiration pattern recognition with a classification accuracy up to 100%, showing great improvement over a single respiratory sensor. Additionally, a customized user-friendly cellphone application is developed to connect the processed respiratory signals for real-time data-driven diagnosis and one-click health data sharing with the clinicians. The deep-learning-assisted on-mask sensor network opens a new avenue for personalized respiration management in the era of the Internet of Things.


Asunto(s)
Aprendizaje Profundo , Humanos , Monitoreo Fisiológico , Respiración , Frecuencia Respiratoria , Relación Señal-Ruido
5.
View (Beijing) ; 3(5): 20220024, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36710943

RESUMEN

Since its outbreak in 2019, COVID-19 becomes a pandemic, severely burdening the public healthcare systems and causing an economic burden. Thus, societies around the world are prioritizing a return to normal. However, fighting the recession could rekindle the pandemic owing to the lightning-fast transmission rate of SARS-CoV-2. Furthermore, many of those who are infected remain asymptomatic for several days, leading to the increased possibility of unintended transmission of the virus. Thus, developing rigorous and universal testing technologies to continuously detect COVID-19 for entire populations remains a critical challenge that needs to be overcome. Wearable respiratory sensors can monitor biomechanical signals such as the abnormities in respiratory rate and cough frequency caused by COVID-19, as well as biochemical signals such as viral biomarkers from exhaled breaths. The point-of-care system enabled by advanced respiratory sensors is expected to promote better control of the pandemic by providing an accessible, continuous, widespread, noninvasive, and reliable solution for COVID-19 diagnosis, monitoring, and management.

6.
ACS Nano ; 15(12): 18633-18646, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34913696

RESUMEN

An expanding elderly population and people with disabilities pose considerable challenges to the current healthcare system. As a practical technology that integrates systems and services, assistive physical therapy devices are essential to maintain or to improve an individual's functioning and independence, thus promoting their well-being. Given technological advancements, core components of self-powered sensors and optimized machine-learning algorithms will play innovative roles in providing assistive services for unmet global needs. In this Perspective, we provide an overview of the latest developments in machine-learning-aided assistive physical therapy devices based on emerging self-powered sensing systems and a discussion of the challenges and opportunities in this field.


Asunto(s)
Dispositivos de Autoayuda , Anciano , Algoritmos , Atención a la Salud , Humanos , Aprendizaje Automático , Modalidades de Fisioterapia
7.
ACS Nano ; 15(12): 20582-20589, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34817978

RESUMEN

In this study, we present the observation of the giant magnetoelastic effect that occurs in soft elastomer systems without the need of external magnetic fields and possesses a magnetomechanical coupling factor that is four times larger than that of traditional rigid metal-based ferromagnetic materials. To investigate the fundamental scientific principles at play, we built a linear model by using COMSOL Multiphysics, which was consistent with the experimental observations. Next, by combining the giant magnetoelastic effect with electromagnetic induction, we developed a magnetoelastic generator (MEG) for biomechanical energy conversion. The wearable MEG demonstrates an ultrahigh output current of 97.17 mA, a low internal impedance of around ∼40 Ω, and an intrinsic waterproof property. We further leveraged the wearable MEG as an ultrahigh current power source to drive a Joule-heating textile for personalized thermoregulation, which increased the temperature of the fiber-shaped resistor by 0.2 °C. The development of the wearable MEG will act as an alternative and compelling approach for on-body electricity generation and arouse a wide range of possibilities in the renewable energy community.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Electricidad , Textiles
8.
Nat Commun ; 12(1): 6755, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799591

RESUMEN

Magnetoelastic effect characterizes the change of materials' magnetic properties under mechanical deformation, which is conventionally observed in some rigid metals or metal alloys. Here we show magnetoelastic effect can also exist in 1D soft fibers with stronger magnetomechanical coupling than that in traditional rigid counterparts. This effect is explained by a wavy chain model based on the magnetic dipole-dipole interaction and demagnetizing factor. To facilitate practical applications, we further invented a textile magnetoelastic generator (MEG), weaving the 1D soft fibers with conductive yarns to couple the observed magnetoelastic effect with magnetic induction, which paves a new way for biomechanical-to-electrical energy conversion with short-circuit current density of 0.63 mA cm-2, internal impedance of 180 Ω, and intrinsic waterproofness. Textile MEG was demonstrated to convert the arterial pulse into electrical signals with a low detection limit of 0.05 kPa,  even with heavy perspiration or in underwater situations without encapsulations.


Asunto(s)
Monitorización Hemodinámica/instrumentación , Nanopartículas de Magnetita/química , Textiles , Dispositivos Electrónicos Vestibles , Boro/química , Elasticidad , Conductividad Eléctrica , Frecuencia Cardíaca , Humanos , Hierro/química , Ensayo de Materiales , Neodimio/química
9.
Nat Mater ; 20(12): 1670-1676, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34594013

RESUMEN

The magnetoelastic effect-the variation of the magnetic properties of a material under mechanical stress-is usually observed in rigid alloys, whose mechanical modulus is significantly different from that of human tissues, thus limiting their use in bioelectronics applications. Here, we observed a giant magnetoelastic effect in a soft system based on micromagnets dispersed in a silicone matrix, reaching a magnetomechanical coupling factor indicating up to four times more enhancement than in rigid counterparts. The results are interpreted using a wavy chain model, showing how mechanical stress changes the micromagnets' spacing and dipole alignment, thus altering the magnetic field generated by the composite. Combined with liquid-metal coils patterned on polydimethylsiloxane working as a magnetic induction layer, the soft magnetoelastic composite is used for stretchable and water-resistant magnetoelastic generators adhering conformably to human skin. Such devices can be used as wearable or implantable power generators and biomedical sensors, opening alternative avenues for human-body-centred applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Prótesis e Implantes
10.
Adv Mater ; 33(41): e2104178, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34467585

RESUMEN

Wearable bioelectronics for continuous and reliable pulse wave monitoring against body motion and perspiration remains a great challenge and highly desired. Here, a low-cost, lightweight, and mechanically durable textile triboelectric sensor that can convert subtle skin deformation caused by arterial pulsatility into electricity for high-fidelity and continuous pulse waveform monitoring in an ambulatory and sweaty setting is developed. The sensor holds a signal-to-noise ratio of 23.3 dB, a response time of 40 ms, and a sensitivity of 0.21 µA kPa-1 . With the assistance of machine learning algorithms, the textile triboelectric sensor can continuously and precisely measure systolic and diastolic pressure, and the accuracy is validated via a commercial blood pressure cuff at the hospital. Additionally, a customized cellphone application (APP) based on built-in algorithm is developed for one-click health data sharing and data-driven cardiovascular diagnosis. The textile triboelectric sensor enabled wireless biomonitoring system is expected to offer a practical paradigm for continuous and personalized cardiovascular system characterization in the era of the Internet of Things.


Asunto(s)
Corazón/fisiología , Aprendizaje Automático , Monitoreo Ambulatorio/métodos , Presión Sanguínea , Enfermedades Cardiovasculares/diagnóstico , Humanos , Aplicaciones Móviles , Monitoreo Ambulatorio/instrumentación , Nanotubos de Carbono/química , Relación Señal-Ruido , Textiles , Dispositivos Electrónicos Vestibles
11.
Biosensors (Basel) ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34436047

RESUMEN

Recent advances in microfluidics, microelectronics, and electrochemical sensing methods have steered the way for the development of novel and potential wearable biosensors for healthcare monitoring. Wearable bioelectronics has received tremendous attention worldwide due to its great a potential for predictive medical modeling and allowing for personalized point-of-care-testing (POCT). They possess many appealing characteristics, for example, lightweight, flexibility, good stretchability, conformability, and low cost. These characteristics make wearable bioelectronics a promising platform for personalized devices. In this paper, we review recent progress in flexible and wearable sensors for non-invasive biomonitoring using sweat as the bio-fluid. Real-time and molecular-level monitoring of personal health states can be achieved with sweat-based or perspiration-based wearable biosensors. The suitability of sweat and its potential in healthcare monitoring, sweat extraction, and the challenges encountered in sweat-based analysis are summarized. The paper also discusses challenges that still hinder the full-fledged development of sweat-based wearables and presents the areas of future research.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Técnicas Electroquímicas , Microfluídica , Sudor
12.
Adv Healthc Mater ; 10(20): e2100975, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34263555

RESUMEN

Wound healing, one of the most complex processes in the human body, involves the spatial and temporal synchronization of a variety of cell types with distinct roles. Slow or nonhealing skin wounds have potentially life-threatening consequences, ranging from infection to scar, clot, and hemorrhage. Recently, the advent of triboelectric nanogenerators (TENGs) has brought about a plethora of self-powered wound healing opportunities, owing to their pertinent features, including wide range choices of constitutive biocompatible materials, simple fabrication, portable size, high output power, and low cost. Herein, a comprehensive review of TENGs as an emerging biotechnology for wound healing applications is presented and covered from three unique aspects: electrical stimulation, antibacterial activity, and drug delivery. To provide a broader context of TENGs applicable to wound healing applications, state-of-the-art designs are presented and discussed in each section. Although some challenges remain, TENGs are proving to be a promising platform for human-centric therapeutics in the era of Internet of Things. Consequently, TENGs for wound healing are expected to provide a new solution in wound management and play an essential role in the future of point-of-care interventions.


Asunto(s)
Materiales Biocompatibles , Cicatrización de Heridas , Humanos
13.
Chem Soc Rev ; 50(17): 9357-9374, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34296235

RESUMEN

Thermoregulation has substantial implications for human health. Traditional central space heating and cooling systems are less efficient due to wasted energy spent on the entire building and ignore individual thermophysiological comfort. Emerging textiles based on innovations in materials chemistry and physics, nanoscience, and nanotechnology have now facilitated thermoregulation in a far more personalized and energy-saving manner. In this tutorial review, we discuss the latest technological advances in thermoregulatory textiles. First, we outline the basic mechanisms behind the physiological chemistry processes for both internal and external thermoregulation in the human body. Then, we systematically elaborate on typical smart passive and active thermoregulatory textiles considering current working mechanisms, materials engineering towards practical applications. In light of burgeoning commercial trends, we offer important insights into green chemistry for the sustainable development of smart thermoregulatory textiles. Prospectively, we propose an autonomous textile thermoregulation system that could intelligently provide personalized thermophysiological comfort in a self-adaptive manner in the era of Internet of Things (IoT). The discussion of interdisciplinary interactions of energy, environmental science, and nanotechnology in this review will further promote development of the thermoregulatory textile field in both academia and industry, ultimately realizing personalized thermoregulation and a sustainable energy future.


Asunto(s)
Regulación de la Temperatura Corporal , Textiles , Humanos , Nanotecnología
14.
Biosens Bioelectron ; 187: 113329, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34020223

RESUMEN

Coronavirus disease 2019 (COVID-19) as a severe acute respiratory syndrome infection has spread rapidly across the world since its emergence in 2019 and drastically altered our way of life. Patients who have recovered from COVID-19 may still face persisting respiratory damage from the virus, necessitating long-term supervision after discharge to closely assess pulmonary function during rehabilitation. Therefore, developing portable spirometers for pulmonary function tests is of great significance for convenient home-based monitoring during recovery. Here, we propose a wireless, portable pulmonary function monitor for rehabilitation care after COVID-19. It is composed of a breath-to-electrical (BTE) sensor, a signal processing circuit, and a Bluetooth communication unit. The BTE sensor, with a compact size and light weight of 2.5 cm3 and 1.8 g respectively, is capable of converting respiratory biomechanical motions into considerable electrical signals. The output signal stability is greater than 93% under 35%-81% humidity, which allows for ideal expiration airflow sensing. Through a wireless communication circuit system, the signals can be received by a mobile terminal and processed into important physiological parameters, such as forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC). The FEV1/FVC ratio is then calculated to further evaluate pulmonary function of testers. Through these measurement methods, the acquired pulmonary function parameters are shown to exhibit high accuracy (>97%) in comparison to a commercial spirometer. The practical design of the self-powered flow spirometer presents a low-cost and convenient method for pulmonary function monitoring during rehabilitation from COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , Espirometría , Capacidad Vital
15.
Small ; 16(28): e2000450, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32529803

RESUMEN

A simple cryo-transfer method to fabricate ultrathin, stretchable, and conformal epidermal electrodes based on a combination of silver nanowires (AgNWs) network and elastomeric polymers is developed. This method can temporarily enable the soft elastomers with much higher elastic modulus and dimensional contraction through exploiting their glass-transition behaviors. During this process, a much higher Von Mises stress can be loaded on AgNWs than usual, and the generated strong grip force can facilitate the complete transfer of AgNWs. Afterward, the thawed AgNWs and elastomer composites quickly recover to their soft state at room temperature. The obtained ultrathin and soft electrode with a thickness of 8.4 µm and transmittance of 90.8% at a sheet resistance of 13.2 Ω sq-1 can tolerate a stretching strain of 70% and 50 000 repeated bending cycles, which meets rigorous requirements of epidermal applications. The as-prepared epidermal electrodes are effective and comfortable for electrophysiological signal monitoring, and while showing excellent performance exceeding the commercialized gel electrodes.


Asunto(s)
Nanocables , Módulo de Elasticidad , Electrodos , Plata
16.
ACS Appl Mater Interfaces ; 12(21): 23689-23696, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32364375

RESUMEN

Long-term, real-time, and comfortable epidermal electronics are of great practical importance for healthcare monitoring and human-machine interaction. However, traditional physiological signal monitoring confined by the specific clinical sites and unreliability of the epidermal electrodes leads to great restrictions on its application. Herein, we constructed a solution-processed submicron (down to 230 nm), free-standing, breathable sandwich-structured hybrid electrode composed of a silver nanowire network with a conductive polymer film, which is conformal, water-permeable, and noninvasive to the skin while achieving good signal acquisition ability. The free-standing hybrid electrode is prepared via an in situ capillary force lift-off process and can be transferred onto complex surfaces. The whole process is a complete solution process that facilitates large-area preparation and application. The light-weight hybrid electrodes exhibit high optical transmittance, high electrical conductivity, and high gas/ion permeability. When the hybrid electrodes are attached onto the skin, the imperceptible films show high conformality with low electrical impedance, thus exhibiting significantly improved electrocardiology and electromyogram signal monitoring performance compared to that of the commercial gel electrodes.


Asunto(s)
Epidermis/fisiología , Monitoreo Fisiológico/instrumentación , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrodos , Humanos , Nanocables/química , Poliestirenos/química , Plata/química , Tiofenos/química
17.
ACS Appl Mater Interfaces ; 11(13): 12195-12201, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30880382

RESUMEN

Suppressing the corrosion of nanoscaled metal materials is a critical issue for various devices. Herein, we demonstrate the electron beam irradiation can be a simple and efficient method to realize silver/copper nanowires protection by transforming the original organic capping agents into dense carbonaceous shells. Single nanowire tests prove the significant stability improvement from 4 days to 20 days for silver nanowire and from 20 h to at least 1 week for copper nanowire. The comprehensive advantages such as solution/pollution-free and continuous process with high precision offer this method substantial potential applications in bottom-up assembled electronic and optoelectronic devices.

18.
Nanoscale ; 10(27): 12981-12990, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29694477

RESUMEN

A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.

19.
ACS Appl Mater Interfaces ; 9(42): 37493-37500, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28975784

RESUMEN

Mimicking the pressure-sensing behavior of biological skins using electronic devices has profound implications for prosthetics and medicine. The developed electronic skins based on single response mode for pressure sensing suffer from a rapid decrease in sensitivity with the increase of pressure. Their highly sensitive range covers a narrow part of tolerable pressure range of the human skin and has a weak response to the injurious high pressures. Herein, inspired by a bioluminescent jellyfish, we develop an electronic skin with dual-mode response characteristics, which is able to quantify and map the static and dynamic pressures by combining electrical and optical responses. The electronic skin shows notable changes in capacitance in the low-pressure regime and can emit bright luminescence in the high-pressure regime, which, respectively, imitates the functions of the mechanoreceptors and nociceptors in the biological skin, enabling it to sense gentle tactile and injurious pressure with sensitivities up to 0.66 and 0.044 kPa-1, respectively. The complementary highly sensitive sensing ranges of the electronic skin realize a reliable perception to different levels of pressure, and its mechanically robust and stretchable properties may find a wide range of applications in intelligent robots.


Asunto(s)
Tacto , Capacidad Eléctrica , Humanos , Presión , Piel , Dispositivos Electrónicos Vestibles
20.
ACS Nano ; 11(2): 2180-2186, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28157328

RESUMEN

Two-dimensional (2D) transition-metal nitrides just recently entered the research arena, but already offer a potential for high-rate energy storage, which is needed for portable/wearable electronics and many other applications. However, a lack of efficient and high-yield synthesis methods for 2D metal nitrides has been a major bottleneck for the manufacturing of those potentially very important materials, and only MoN, Ti4N3, and GaN have been reported so far. Here we report a scalable method that uses reduction of 2D hexagonal oxides in ammonia to produce 2D nitrides, such as MoN. MoN nanosheets with subnanometer thickness have been studied in depth. Both theoretical calculation and experiments demonstrate the metallic nature of 2D MoN. The hydrophilic restacked 2D MoN film exhibits a very high volumetric capacitance of 928 F cm-3 in sulfuric acid electrolyte with an excellent rate performance. We expect that the synthesis of metallic 2D MoN and two other nitrides (W2N and V2N) demonstrated here will provide an efficient way to expand the family of 2D materials and add many members with attractive properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...