Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 18(9): e0291724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733728

RESUMEN

Dental pain from apical periodontitis is an infection induced-orofacial pain condition that presents with diversity in pain phenotypes among patients. While 60% of patients with a full-blown disease present with the hallmark symptom of mechanical allodynia, nearly 40% of patients experience no pain. Furthermore, a sexual dichotomy exists, with females exhibiting lower mechanical thresholds under basal and diseased states. Finally, the prevalence of post-treatment pain refractory to commonly used analgesics ranges from 7-19% (∼2 million patients), which warrants a thorough investigation of the cellular changes occurring in different patient cohorts. We, therefore, conducted a transcriptomic assessment of periapical biopsies (peripheral diseased tissue) from patients with persistent apical periodontitis. Surgical biopsies from symptomatic male (SM), asymptomatic male (AM), symptomatic female (SF), and asymptomatic female (AF) patients were collected and processed for bulk RNA sequencing. Using strict selection criteria, our study found several unique differentially regulated genes (DEGs) between symptomatic and asymptomatic patients, as well as novel candidate genes between sexes within the same pain group. Specifically, we found the role of cells of the innate and adaptive immune system in mediating nociception in symptomatic patients and the role of genes involved in tissue homeostasis in potentially inhibiting nociception in asymptomatic patients. Furthermore, sex-related differences appear to be tightly regulated by macrophage activity, its secretome, and/or migration. Collectively, we present, for the first time, a comprehensive assessment of peripherally diseased human tissue after a microbial insult and shed important insights into the regulation of the trigeminal system in female and male patients.


Asunto(s)
Hiperalgesia , Transcriptoma , Humanos , Femenino , Masculino , Perfilación de la Expresión Génica , Dolor Facial , Biopsia
2.
Sci Rep ; 13(1): 13117, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573456

RESUMEN

Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: (1) FACS sorting obtained higher number of neurons from female trigeminal ganglia (TG) compared to males; (2) Naïve female neurons innervating the tongue expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. (3) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. (4) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, (5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.


Asunto(s)
Células Receptoras Sensoriales , Lengua , Ratones , Masculino , Femenino , Animales , Lengua/metabolismo , Ganglio del Trigémino/metabolismo , Caracteres Sexuales , Biomarcadores/metabolismo , Genómica
3.
bioRxiv ; 2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711730

RESUMEN

Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: 1) Tongue tissue of female mice was innervated with higher number of trigeminal neurons compared to males; 2) Naïve female neurons innervating the tongue exclusively expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. 4) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. 3) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, 5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.

4.
Pain ; 163(3): 496-507, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34321412

RESUMEN

ABSTRACT: Oral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known. The current study evaluates a novel peripheral role of BDNF-tropomyosin receptor kinase B (TrkB) signaling in oral cancer pain. Using human oral squamous cell carcinoma (OSCC) cells and an orthotopic mouse tongue cancer pain model, we found that BDNF levels were upregulated in superfusates and lysates of tumor tongues and that BDNF was expressed by OSCC cells themselves. Moreover, neutralization of BDNF or inhibition of TrkB activity by ANA12, within the tumor-bearing tongue reversed tumor-induced pain-like behaviors in a sex-dependent manner. Oral squamous cell carcinoma conditioned media also produced pain-like behaviors in naïve male mice that was reversed by local injection of ANA12. On a physiological level, using single-fiber tongue-nerve electrophysiology, we found that acutely blocking TrkB receptors reversed tumor-induced mechanical sensitivity of A-slow high threshold mechanoreceptors. Furthermore, single-cell reverse transcription polymerase chain reaction data of retrogradely labeled lingual neurons demonstrated expression of full-form TrkB and truncated TrkB in distinct neuronal subtypes. Last but not the least, intra-TG siRNA for TrkB also reversed tumor-induced orofacial pain behaviors. Our data suggest that TrkB activities on lingual sensory afferents are partly controlled by local release of OSCC-derived BDNF, thereby contributing to oral cancer pain. This is a novel finding and the first demonstration of a peripheral role for BDNF signaling in oral cancer pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dolor en Cáncer , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Dolor en Cáncer/etiología , Carcinoma de Células Escamosas/complicaciones , Carcinoma de Células Escamosas/patología , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Boca/complicaciones , Dolor , Receptor trkB/genética , Caracteres Sexuales , Carcinoma de Células Escamosas de Cabeza y Cuello , Tropomiosina
5.
Protein & Cell ; (12): 124-140, 2014.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-757515

RESUMEN

Timely removal of oxidatively damaged proteins is critical for cells exposed to oxidative stresses; however, cellular mechanism for clearing oxidized proteins is not clear. Our study reveals a novel type of protein modification that may play a role in targeting oxidized proteins and remove them. In this process, DSS1 (deleted in split hand/split foot 1), an evolutionally conserved small protein, is conjugated to proteins induced by oxidative stresses in vitro and in vivo, implying oxidized proteins are DSS1 clients. A subsequent ubiquitination targeting DSS1-protein adducts has been observed, suggesting the client proteins are degraded through the ubiquitin-proteasome pathway. The DSS1 attachment to its clients is evidenced to be an enzymatic process modulated by an unidentified ATPase. We name this novel protein modification as DSSylation, in which DSS1 plays as a modifier, whose attachment may render target proteins a signature leading to their subsequent ubiquitination, thereby recruits proteasome to degrade them.


Asunto(s)
Humanos , Radicales Libres , Metabolismo , Células HeLa , Oxidación-Reducción , Estrés Oxidativo , Genética , Complejo de la Endopetidasa Proteasomal , Genética , Metabolismo , Unión Proteica , Modificación Traduccional de las Proteínas , Genética , Ubiquitina , Metabolismo , Ubiquitinación , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...