Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6824-6833, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498002

RESUMEN

The composition and thickness of the passive film formed on the surface of an austenitic Ni-free DIN 1.4456 stainless steel (18% Cr, 18% Mn, and 2% Mo) used in orthodontics were investigated by X-ray photoelectron spectroscopy following contact with three complex artificial saliva solutions containing different organic components. It was found that the synergistic action of low pH and the presence of sodium citrate and lactic acid in the Darvell formulation resulted in thin passive films strongly enriched in chromium phosphates and oxyhydroxides and depleted in iron oxide. The differences in the surface chemistry of the passive film formed upon contact with the different artificial saliva formulations can be related to the more intense alloy dissolution in the active/passive transition, as shown by the polarization curves. Citrates or lactic acid can complex iron and promote alloy dissolution. The corrosion rates diminish with time, and after 16 h, they are found to be about 0.5 µm/year for all saliva formulations examined.

2.
Phys Chem Chem Phys ; 26(17): 13020-13033, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38275012

RESUMEN

The physico-chemical investigation of superparamagnetic MCM41 like materials prepared by the novel combination of high energy ball milling and a liquid crystal templating method is presented. Structural, morphological, textural, thermal, and preliminary magnetic characterization demonstrated the successful combination of the two synthesis techniques, avoiding the problems associated with the current methods used for the preparation of magnetic ordered mesoporous silica. MCM41 like materials with high specific surface area values (625-720 m2 g-1) and high mesopore volumes in the range 1-0.7 cm3 g-1 were obtained. The ordered mesoporous structure and accessible pores were maintained after the inclusion of increasing amounts of the magnetic component in the silica structure. All the samples showed superparamagnetic behaviour.

3.
Nanomaterials (Basel) ; 13(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37999287

RESUMEN

This study focuses on the dissolution process and surface characterization of amosite fibres following interaction with a mimicked Gamble's solution at a pH of 4.5 and T = 37 °C, up to 720 h. To achieve this, a multi-analytical approach was adopted, and the results were compared to those previously obtained on a sample of asbestos tremolite and UICC crocidolite, which were investigated under the same experimental conditions. Combining surface chemical data obtained by XPS with cation release quantified by ICP-OES, an incongruent behaviour of the fibre dissolution was highlighted for amosite fibres, similarly to asbestos tremolite and UICC crocidolite. In particular, a preferential release of Mg and Ca from the amphibole structure was observed, in agreement with their Madelung site energies. Notably, no Fe release from amosite fibres was detected in our experimental conditions (pH of 4.5 and atmospheric pO2), despite the occurrence of Fe(II) at the M(4) site of the amphibole structure, where cations are expected to be rapidly leached out during mineral dissolution. Moreover, the oxidation of both the Fe centres initially present on the fibre surface and those promoted from the bulk, because of the erosion of the outmost layers, was observed. Since biodurability (i.e., the resistance to dissolution) is one of the most important toxicity parameters, the knowledge of the surface alteration of asbestos possibly occurring in vivo may help to understand the mechanisms at the basis of its long-term toxicity.

4.
J Hazard Mater ; 457: 131754, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37276694

RESUMEN

The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestos-like morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure.

5.
Nanomaterials (Basel) ; 13(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110929

RESUMEN

The differences between bare carbon dots (CDs) and nitrogen-doped CDs synthesized from citric acid as a precursor are investigated, aiming at understanding the mechanisms of emission and the role of the doping atoms in shaping the optical properties. Despite their appealing emissive features, the origin of the peculiar excitation-dependent luminescence in doped CDs is still debated and intensively being examined. This study focuses on the identification of intrinsic and extrinsic emissive centers by using a multi-technique experimental approach and computational chemistry simulations. As compared to bare CDs, nitrogen doping causes the decrease in the relative content of O-containing functional groups and the formation of both N-related molecular and surface centers that enhance the quantum yield of the material. The optical analysis suggests that the main emission in undoped nanoparticles comes from low-efficient blue centers bonded to the carbogenic core, eventually with surface-attached carbonyl groups, the contribution in the green range being possibly related to larger aromatic domains. On the other hand, the emission features of N-doped CDs are mainly due to the presence of N-related molecules, with the computed absorption transitions calling for imidic rings fused to the carbogenic core as the potential structures for the emission in the green range.

6.
J Colloid Interface Sci ; 634: 402-417, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542970

RESUMEN

In this work, we unveil the fluorescence features of citric acid and urea-based Carbon Dots (CDs) through a photo-physical characterization of nanoparticles synthesized, under solvent-free and open-air conditions, within silica-ordered mesoporous silica, as a potential host for solid-state emitting hybrids. Compared to CDs synthesized without silica matrices and dispersed in water, silica-CD hybrids display a broader emission in the green range whose contribution can be increased by UV and blue laser irradiation. The analysis of hybrids synthesized within different silica (MCM-48 and SBA-15) calls for an active role of the matrix in directing the synthesis toward the formation of CDs with a larger content of graphitic N and imidic groups at the expense of N-pyridinic molecules. As a result, CDs tuned in size and with a larger green emission are obtained in the hybrids and are retained once extracted from the silica matrix and dispersed in water. The kinetics of the photo-physics under UV and blue irradiation of hybrid samples show a photo-assisted formation process leading to a further increase of the relative contribution of the green emission, not observed in the water-dispersed reference samples, suggesting that the porous matrix is involved also in the photo-activated process. Finally, we carried out DFT and TD-DFT calculations on the interaction of silica with selected models of CD emitting centers, like surface functional groups (OH and COOH), dopants (graphitic N), and citric acid-based molecules. The combined experimental and theoretical results clearly indicate the presence of molecular species and surface centers both emitting in the blue and green spectral range, whose relative contribution is tuned by the interaction with the surrounding media.


Asunto(s)
Grafito , Puntos Cuánticos , Carbono , Dióxido de Silicio , Agua , Ácido Cítrico
7.
Chemosphere ; 296: 133897, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35218777

RESUMEN

Low-cost and largely available industrial by-products such as calcite (CaCO3) have been considered as sorbents to remediate wastewaters from toxic elements, such as lead, in compliance with the European circular economy strategy. To date few articles are reporting results on lead sorption at the calcite-water solution interface by X-ray photoelectron spectroscopy (XPS) and this investigation aims to clarifying the mechanism of the interaction of Pb2+ model solutions over a wide concentration range, from 0.1 µM to 80 mM, with commercial calcite. X-ray powder diffraction (XRPD), scanning electron microscopy (SEM, EDX) and XPS analysis indicate that when CaCO3 particles are soaked in Pb2+ 0.1 mM and 1 mM solutions, hexagonal platelets of hydrocerussite [(PbCO3)2 Pb(OH)2] precipitate on its surface. When the concentration of Pb2+ is equal or higher than 40 mM, prismatic acicula of cerussite [PbCO3] precipitate. Solution analysis by atomic emission spectroscopy (ICP-AES) and ICP-mass spectrometry (ICP-MS) indicate that Pb2+ removal efficiency is nearly 100%; when the initial Pb2+ concentration was equal to 0.1 µM it was below the limit of detection (LOD) and the efficiency could not be determined. The sorption capacity (qe) increases linearly with increasing initial Pb2+ concentration up to a value of 1680 (20) mg/g when the initial Pb2+concentration is 80 mM. These findings suggest that heterogeneous nucleation and surface co-precipitation occur and calcite can be well considered a very promising sorbent for Pb2+ removal from wastewaters within a wide initial concentration range.


Asunto(s)
Carbonato de Calcio , Contaminantes Químicos del Agua , Adsorción , Carbonato de Calcio/química , Plomo , Análisis Espectral , Aguas Residuales , Contaminantes Químicos del Agua/química
8.
Sci Rep ; 11(1): 14249, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244595

RESUMEN

This study aimed at investigating the surface modifications occurring on amphibole asbestos (crocidolite and tremolite) during leaching in a mimicked Gamble's solution at pH of 4.5 and T = 37 °C, from 1 h up to 720 h. Results showed that the fibre dissolution starts with the release of cations prevalently allocated at the various M- and (eventually) A-sites of the amphibole structure (incongruent dissolution). The amount of released silicon, normalized to fibre surface area, highlighted a leaching faster for the crocidolite sample, about twenty times higher than that of tremolite. Besides, the fast alteration of crocidolite promotes the occurrence of Fe centres in proximity of the fibre surface, or possibly even exposed, particularly in the form of Fe(II), of which the bulk is enriched with respect to the oxidized surface. Conversely, for tremolite fibres the very slow fibre dissolution prevents the underlying cations of the bulk to be exposed on the mineral surface, and the iron oxidation, faster than the leaching process, significantly depletes the surface Fe(II) centres initially present. Results of this work may contribute to unravel possible correlations between surface properties of amphibole asbestos and its long-term toxicity.

9.
Front Chem ; 8: 272, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351939

RESUMEN

The present work focuses on the characterization of brass surfaces after contact with artificial saliva solution at pH 7.4 and phosphate buffer solution at pH 7 simulating two extreme conditions that might occur when playing ancient brass wind instruments in the context of historically informed performance practice. The composition and the morphology of the film formed following the contact with the solutions for 1, 3, and 16 h were investigated by ex situ X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to shed a light on the surface changes upon time. In situ electrochemical impedance spectroscopy (EIS) was used to study the mechanism of corrosion and protection of the alloys. The results could be interpreted using a reliable equivalent electrical circuit; they provided evidence that the alloys behave differently when in contact to the various solutions. In saliva solution the formation on the brass surface of a thick surface film was observed, composed of crystallites of about 200 nm size mainly composed of CuSCN and Zn3(PO4)2. This layer hinders the alloy dissolution. The contact of the alloys with the buffer solution originated a much thinner layer composed of Cu2O, ZnO, and a small amount of Zn3(PO4)2. This film is rapidly formed and does not evolve upon time in a protective film.

10.
RSC Adv ; 10(21): 12519-12534, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497602

RESUMEN

Hydrogen production by photocatalytic water splitting is one of the most promising sustainable routes to store solar energy in the form of chemical bonds. To obtain significant H2 evolution rates (HERs) a variety of defective TiO2 catalysts were synthesized by means of procedures generally requiring highly energy-consuming treatments, e.g. hydrogenation. Even if a complete understanding of the relationship between defects, electronic structure and catalytic active sites is far from being achieved, the band gap narrowing and Ti3+-self-doping have been considered essential to date. In most reports a metal co-catalyst (commonly Pt) and a sacrificial electron donor (such as methanol) are used to improve HERs. Here we report the synthesis of TiO2/C bulk heterostructures, obtained from a hybrid TiO2-based gel by simple heat treatments at 400 °C under different atmospheres. The electronic structure and properties of the grey or black gel-derived powders are deeply inspected by a combination of classical and less conventional techniques, in order to identify the origin of their photoresponsivity. The defective sites of these heterostructures, namely oxygen vacancies, graphitic carbon and unpaired electrons localized on the C matrix, result in a remarkable visible light activity in spite of the lack of band gap narrowing or Ti3+-self doping. The materials provide HER values ranging from about 0.15 to 0.40 mmol h-1 gcat -1, under both UV- and visible-light irradiation, employing glycerol as sacrificial agent and without any co-catalyst.

11.
RSC Adv ; 9(33): 19171-19179, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35685202

RESUMEN

Nanostructured spinel cobalt ferrite samples having crystallite size ranging between 5.6 and 14.1 nm were characterized by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy in order to determine the chemical state of the elements, the iron/cobalt ratio and the cation distribution within tetrahedral and octahedral sites. The presence of size-dependent trends in the binding energy of the main photoelectron peaks and in the kinetic energy of the X-ray induced O KLL signal was also investigated. The results showed that iron is present as FeIII and cobalt is present as CoII. The iron/cobalt ratio determined by XPS ranges between 1.8 and 1.9 and it is in very good agreement, within experimental uncertainty, with the expected 2 : 1 ratio. The percentage of Fe in octahedral sites ranges between 62% and 64% for all samples. The kinetic energy of the O KLL signals increases with crystallite size. These results are explained in terms of changes in the ionicity of the metal-oxygen bonds. The results of this investigation highlight how the XPS technique represents a powerful tool to investigate the composition, the chemical state and inversion degree of cobalt spinel ferrites, contributing to the comprehension of their properties.

12.
ACS Appl Mater Interfaces ; 9(31): 26531-26538, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28742322

RESUMEN

The mechanochemical reaction between copper and dimethyl disulfide is studied under well-controlled conditions in ultrahigh vacuum (UHV). Reaction is initiated by fast S-S bond scission to form adsorbed methyl thiolate species, and the reaction kinetics are reproduced by two subsequent elementary mechanochemical reaction steps, namely a mechanochemical decomposition of methyl thiolate to deposit sulfur on the surface and evolve small, gas-phase hydrocarbons, and sliding-induced oxidation of the copper by sulfur that regenerates vacant reaction sites. The steady-state reaction kinetics are monitored in situ from the variation in the friction force as the reaction proceeds and modeled using the elementary-step reaction rate constants found for monolayer adsorbates. The analysis yields excellent agreement between the experiment and the kinetic model, as well as correctly predicting the total amount of subsurface sulfur in the film measured using Auger spectroscopy and the sulfur depth distribution measured by angle-resolved X-ray photoelectron spectroscopy.

13.
ACS Omega ; 2(11): 7790-7802, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457337

RESUMEN

NiP alloys are very often used in industry, due to their outstanding performance in corrosion and wear. Alloys with high phosphorus content (≥16 atom % P) are amorphous and show high corrosion resistance in both neutral and acidic solutions irrespective of the presence of chloride ions. The reason for this behavior is attributed to the formation of a "P-enriched surface layer" whose exact nature is still under debate. In this work, an iterative algorithm based on the application of maximum entropy method on nondestructive angle-resolved X-ray photoelectron spectroscopy data has been applied to the investigation of the surface layer grown on Ni18P alloys following mechanical polishing and anodic polarization in sulfate solutions. The results show that the outermost region of the examined alloy has a complex layered structure: (1) an uppermost hydrocarbon contamination layer about 1 nm thick, which includes also adsorbed water; (2) a nickel (poly)phosphate layer of about 1 nm; (3) a highly phosphorus-enriched interface being about 2 nm thick with a marked phosphorus concentration gradient, from 70 to 20 atom %; and (4) bulk alloy with the stoichiometric composition. These findings, together with the chemical state of the different phosphorus compounds, allow us to conclude that the high corrosion and wear resistance of NiP alloys might be ascribed to the presence of a thin, self-repairing nickel (poly)phosphate layer grown on a strongly P-enriched interface. Because the Auger parameter of P at the interface is similar to that of elemental P, it might be also concluded that the interface is enriched in elemental phosphorus.

14.
ACS Appl Mater Interfaces ; 7(19): 10337-47, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25905426

RESUMEN

A chronoamperometric method has been applied for the growth of a surface coating on AZ31B magnesium alloy, using the imidazolium alkylphosphonate room-temperature ionic liquid 1-ethyl-3-methylimidazolium ethylphosphonate ([EMIM][EtPO3H]) as electrolyte. A surface coating layer is obtained after 4 h under a constant voltage bias of -0.8 V with respect to the standard electrode. The coating nucleation and growth process correlates well with a 3D progressive mechanism. X-ray photoelectron spectrometry (XPS) analysis of [EMIM][EtPO3H] shows new P 2p and O 1s peaks after its use as electrolyte, as a consequence of reaction between the phosphonate anion and the magnesium substrate. Angle-resolved XPS (ARXPS) analysis of [EMIM][EtPO3H] did not show any change in the composition of the surface before and after chronoamperometry, since the sampling depth (1.5 nm at the highest emission angle) is larger than the cation and anion sizes (ca. 7 and 5 Å, respectively). Characterization of the coating was made by scanning electron microscopy (SEM), focussed ion beam SEM, energy dispersive X-ray spectroscopy, XPS, and ARXPS. FIB-SEM shows that the coating presents a mean thickness of 374 (±36) nm and contains magnesium and aluminum phosphates. Linear reciprocating tribological tests under variable load show that the presence of the coating can reduce friction coefficients of the coated AZ31B against steel up to 32% and wear rates up to 90%, with respect to the uncoated alloy.

15.
Anal Bioanal Chem ; 401(7): 2237-48, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21847529

RESUMEN

In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action.


Asunto(s)
Acidithiobacillus/metabolismo , Arsenicales/química , Compuestos de Hierro/química , Hierro/química , Minerales/química , Espectroscopía de Fotoelectrones , Sulfuros/metabolismo , Difracción de Rayos X , Arsenicales/metabolismo , Hierro/metabolismo , Compuestos de Hierro/metabolismo , Minerales/metabolismo , Espectrofotometría Atómica , Sulfuros/química
16.
Anal Bioanal Chem ; 396(8): 2889-98, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20217397

RESUMEN

Asbestos fibers are an important cause of serious health problems and respiratory diseases. The presence, structural coordination, and oxidation state of iron at the fiber surface are potentially important for the biological effects of asbestos because iron can catalyze the Haber-Weiss reaction, generating the reactive oxygen species *OH. Literature results indicate that the surface concentration of Fe(III) may play an important role in fiber-related radical formation. Amphibole asbestos were analyzed by X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy, with the aim of determining the surface vs. bulk Fe(III)/Fe(tot) ratios. A standard reference asbestos (Union Internationale Contre le Cancer crocidolite from South Africa) and three fibrous tremolite samples (from Italy and USA) were investigated. In addition to the Mössbauer spectroscopy study of bulk Fe(III)/Fe(tot) ratios, much work was dedicated to the interpretation of the XPS Fe2p signal and to the quantification of surface Fe(III)/Fe(tot) ratios. Results confirmed the importance of surface properties because this showed that fiber surfaces are always more oxidized than the bulk and that Fe(III) is present as oxide and oxyhydroxide species. Notably, the highest difference of surface/bulk Fe oxidation was found for San Mango tremolite--the sample that in preliminary cytotoxicity tests (MTT assay) had revealed a cell mortality delayed with respect to the other samples.

17.
Ann Chim ; 93(1-2): 11-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12650569

RESUMEN

A systematic analytical study using X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) has been carried out to characterize the chemical state of arsenic in complex environmental samples. The conventional approach, which relies on the chemical shift of the core levels As3d, provides ambiguous results in determining the chemical environment of arsenic. A more accurate approach, based on the Auger parameter and on the Wagner (Chemical State) plot, which combines AsLMM kinetic energy and As3d binding energy, was adopted. This novel method for determining the chemical state of arsenic was employed to completely characterize arsenic in complex environmental samples.


Asunto(s)
Arsénico/análisis , Monitoreo del Ambiente/métodos , Arsénico/química , Minerales , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...