Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(1): e2300232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37975165

RESUMEN

Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.


Asunto(s)
Chlamydomonas reinhardtii , Inhibidores de Histona Desacetilasas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Vorinostat , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Histona Desacetilasas/metabolismo , Transgenes/genética
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068947

RESUMEN

The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom Phaeodactylum tricornutum through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). P. tricornutum is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes TKS and OAC into the diatom. P. tricornutum transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6-2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of P. tricornutum with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.


Asunto(s)
Cannabinoides , Cannabis , Diatomeas , Alucinógenos , Cannabis/genética , Cannabinoides/genética , Diatomeas/genética , Agonistas de Receptores de Cannabinoides , Bioingeniería
3.
Plant Cell Rep ; 41(3): 535-548, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33651205

RESUMEN

KEY MESSAGE: StCDPK2 is an early player in the salt stress response in potato plants; its overexpression promoted ROS scavenging, chlorophyll stability, and the induction of stress-responsive genes conferring tolerance to salinity. The salinity of soils affects plant development and is responsible for great losses in crop yields. Calcium-dependent protein kinases (CDPKs) are sensor-transducers that decode Ca2+ signatures triggered by abiotic stimuli and translate them into physiological responses. Histochemical analyses of potato plants harboring StCDPK2 promoter fused to the reporter gene ß-glucuronidase (ProStCDPK2:GUS) revealed that GUS activity was high in the leaf blade and veins, it was restricted to root tips and lateral root primordia, and was observed upon stolon swelling. Comparison with ProStCDPK1:GUS and ProStCDPK3:GUS plants revealed their differential activities in the plant tissues. ProStCDPK2:GUS plants exposed to high salt presented enhanced GUS activity in roots which correlated with the numerous stress-responsive sites predicted in its promoter sequence. Moreover, StCDPK2 expression increased in in vitro potato plants after 2 h of high salt exposure and in greenhouse plants exposed to a dynamic stress condition. As inferred from biometric data and chlorophyll content, plants that overexpress StCDPK2 were more tolerant than wild-type plants when exposed to high salt. Overexpressing plants have a more efficient antioxidant system; they showed reduced accumulation of peroxide and higher catalase activity under salt conditions, and enhanced expression of WRKY6 and ERF5 transcription factors under control conditions. Our results indicate that StCDPK2 is an early player in the salt stress response and support a positive correlation between StCDPK2 overexpression and tolerance towards salt stress.


Asunto(s)
Solanum tuberosum , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estrés Salino/genética , Solanum tuberosum/metabolismo , Estrés Fisiológico/genética
4.
Plant Physiol Biochem ; 162: 716-729, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33799183

RESUMEN

Four members of the potato (Solanum tuberosum L.) calcium-dependent protein kinase (CDPK) family StCDPK22/23/24 and StCDPK27, present three functional EF-hands motifs in their calmodulin-like domain (CLD). StCDPK22/23/24 are clustered in clade III-b1 with tomato and Arabidopsis CDPKs that lack the first EF-hand motif, while StCDPK27 is clustered in clade III-b3 with CDPKs that lack EF-hand 2. Members of each clade share similar intron-exon structures and acylation profiles. 3D model predictions suggested that StCDPK22 and StCDPK24 are active kinases that undergo a conformational switch in the presence of Ca2+ even when lacking one functional EF-hand motif; however, assays performed with recombinant proteins indicated that StCDPK24:6xHis was active in all the conditions tested, and its activity was enhanced in the presence of Ca2+, but StCDPK22:6xHis had scarce or null activity. Both kinases share with AtCPK8 the same autophosphorylation pattern in the autoinhibitory (AD) and C-terminal variable (CTV) domains, suggesting that it could be a characteristic of clade III-b1. RT-qPCR analysis revealed that StCDPK22 is mainly expressed in early stages of tuberization, but not limited to, while StCDPK24 expression is more ubiquitous. In silico analysis predicted several abiotic stress-responsive elements in its promoters. Accordingly, StCDPK24 expression peaked at 10 h in in vitro plants exposed to salt shock and then declined. Moreover, a significant increase was observed at 2 h in stems of salt-treated greenhouse plants, suggesting that this CDPK could participate in the early events of the signaling cascade triggered in response to salt.


Asunto(s)
Arabidopsis , Solanum tuberosum , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/metabolismo , Clonidina/análogos & derivados , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
5.
Front Plant Sci ; 11: 71, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32127795

RESUMEN

A Gram-negative pink-pigmented bacillus (named 2A) was isolated from Solanum tuberosum L. cv. Desirée plants that were strikingly more developed, presented increased root hair density, and higher biomass than other potato lines of the same age. The 16S ribosomal DNA sequence, used for comparative gene sequence analysis, indicated that strain 2A belongs to the genus Methylobacterium. Nucleotide identity between Methylobacterium sp. 2A sequenced genome and the rest of the species that belong to the genus suggested that this species has not been described so far. In vitro, potato plants inoculated with Methylobacterium sp. 2A had a better performance when grown under 50 mM NaCl or when infected with Phytophthora infestans. We inoculated Methylobacterium sp. 2A in Arabidopsis thaliana roots and exposed these plants to salt stress (75 mM NaCl). Methylobacterium sp. 2A-inoculated plants, grown in control or salt stress conditions, displayed a higher density of lateral roots (p < 0.05) compared to noninoculated plants. Moreover, under salt stress, they presented a higher number of leaves and larger rosette diameter. In dual confrontation assays, Methylobacterium sp. 2A displayed biocontrol activity against P. infestans, Botrytis cinerea, and Fusarium graminearum, but not against Rhizoctonia solani, and Pythium dissotocum. In addition, we observed that Methylobacterium sp. 2A diminished the size of necrotic lesions and reduced chlorosis when greenhouse potato plants were infected with P. infestans. Methylobacterium sp. 2A produces indole acetic acid, solubilizes mineral phosphate and is able to grow in a N2 free medium. Whole-genome sequencing revealed metabolic pathways associated with its plant growth promoter capacity. Our results suggest that Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria (PGPR) that can alleviate salt stress, and restricts P. infestans infection in potato plants, emerging as a potential strategy to improve crop management.

6.
Plant Cell Rep ; 36(7): 1137-1157, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28451820

RESUMEN

KEY MESSAGE: We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca2+) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca2+-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.


Asunto(s)
Phytophthora infestans/fisiología , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Citosol/enzimología , Citosol/metabolismo , Resistencia a la Enfermedad/genética , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimología
7.
Physiol Plant ; 159(2): 244-261, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27716933

RESUMEN

Among many factors that regulate potato tuberization, calcium and calcium-dependent protein kinases (CDPKs) play an important role. CDPK activity increases at the onset of tuber formation with StCDPK1 expression being strongly induced in swollen stolons. However, not much is known about the transcriptional and posttranscriptional regulation of StCDPK1 or its downstream targets in potato development. To elucidate further, we analyzed its expression in different tissues and stages of the life cycle. Histochemical analysis of StCDPK1::GUS (ß-glucuronidase) plants demonstrated that StCDPK1 is strongly associated with the vascular system in stems, roots, during stolon to tuber transition, and in tuber sprouts. In agreement with the observed GUS profile, we found specific cis-acting elements in StCDPK1 promoter. In silico analysis predicted miR390 to be a putative posttranscriptional regulator of StCDPK1. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis showed ubiquitous expression of StCDPK1 in different tissues which correlated well with Western blot data except in leaves. On the contrary, miR390 expression exhibited an inverse pattern in leaves and tuber eyes suggesting a possible regulation of StCDPK1 by miR390. This was further confirmed by Agrobacterium co-infiltration assays. In addition, in vitro assays showed that recombinant StCDPK1-6xHis was able to phosphorylate the hydrophilic loop of the auxin efflux carrier StPIN4. Altogether, these results indicate that StCDPK1 expression is varied in a tissue-specific manner having significant expression in vasculature and in tuber eyes; is regulated by miR390 at posttranscriptional level and suggest that StPIN4 could be one of its downstream targets revealing the overall role of this kinase in potato development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Proteínas Quinasas/metabolismo , Solanum tuberosum/enzimología , Regulación Enzimológica de la Expresión Génica , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana , Especificidad de Órganos , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Tubérculos de la Planta/citología , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Procesamiento Postranscripcional del ARN , ARN de Planta/genética , Solanum tuberosum/citología , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo
8.
PLoS One ; 11(12): e0167389, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907086

RESUMEN

Calcium-dependent protein kinases, CDPKs, decode calcium (Ca2+) transients and initiate downstream responses in plants. In order to understand how CDPKs affect plant physiology, their specific target proteins must be identified. In tobacco, the bZIP transcription factor Repression of Shoot Growth (NtRSG) that modulates gibberellin (GA) content is a specific target of NtCDPK1. StCDPK3 from potato is homologous (88% identical) to NtCDPK1 even in its N-terminal variable domain. In this work, we observe that NtRSG is also phosphorylated by StCDPK3. The potato RSG family of transcription factors is composed of three members that share similar features. The closest homologue to NtRSG, which was named StRSG1, was amplified and sequenced. qRT-PCR data indicate that StRSG1 is mainly expressed in petioles, stems, lateral buds, and roots. In addition, GA treatment affected StRSG1 expression. StCDPK3 transcripts were detected in leaves, petioles, stolons, roots, and dormant tubers, and transcript levels were modified in response to GA. The recombinant StRSG1-GST protein was produced and tested as a substrate for StCDPK3 and StCDPK1. 6xHisStCDPK3 was able to phosphorylate the potato StRSG1 in a Ca2+-dependent way, while 6xHisStCDPK1 could not. StCDPK3 also interacts and phosphorylates the transcription factor StABF1 (ABRE binding factor 1) involved in ABA signaling, as shown by EMSA and phosphorylation assays. StABF1 transcripts were mainly detected in roots, stems, and stolons. Our data suggest that StCDPK3 could be involved in the cross-talk between ABA and GA signaling at the onset of tuber development.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Solanum tuberosum/genética , Factores de Transcripción/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Señalización del Calcio/genética , Quinasa 2 de Adhesión Focal/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Fosforilación , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Serina , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Nicotiana/genética , Factores de Transcripción/metabolismo
9.
Funct Integr Genomics ; 16(4): 399-418, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27075731

RESUMEN

Potato (Solanum tuberosum L.) tubers are an excellent staple food due to its high nutritional value. When the tuber reaches physiological competence, sprouting proceeds accompanied by changes at mRNA and protein levels. Potato tubers become a source of carbon and energy until sprouts are capable of independent growth. Transcript profiling of sprouts grown under continuous light or dark conditions was performed using the TIGR 10K EST Solanaceae microarray. The profiles analyzed show a core of highly expressed transcripts that are associated to the reactivation of growth. Under light conditions, the photosynthetic machinery was fully activated; the highest up-regulation was observed for the Rubisco activase (RCA), the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the Photosystem II 22 kDa protein (CP22) genes, among others. On the other hand, sprouts exposed to continuous darkness elongate longer, and after extended darkness, synthesis of chloroplast components was repressed, the expression of proteases was reduced while genes encoding cysteine protease inhibitors (CPIs) and metallocarboxypeptidase inhibitors (MPIs) were strongly induced. Northern blot and RT-PCR analysis confirmed that MPI levels correlated with the length of the dark period; however, CPI expression was strong only after longer periods of darkness, suggesting a feedback loop (regulation mechanism) in response to dark-induced senescence. Prevention of cysteine protease activity in etiolated sprouts exposed to extended darkness could delay senescence until they emerge to light.


Asunto(s)
Inhibidores de Cisteína Proteinasa , Fotosíntesis/genética , Proteínas de Plantas/biosíntesis , Solanum tuberosum/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...