Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475418

RESUMEN

Ozone (O3) pollution poses a significant threat to global crop productivity, particularly for wheat, one of the most important staple foods. While bread wheat (Triticum aestivum) is unequivocally considered highly sensitive to O3, durum wheat (Triticum durum) was often found to be more tolerant. This study investigated the O3 dose-response relationships for durum wheat in the Mediterranean region, focusing mainly on grain yield losses, and utilizing the phytotoxic ozone dose (POD) metric to describe the intensity of the stressor. The results from two experiments with Open-Top Chambers performed in 2013 and 2014 on two relatively sensitive durum wheat cultivars confirmed that this wheat species is far more tolerant than bread wheat. The use of a local parameterization of a stomatal conductance model based on field measurements did not significantly improve the dose-response relationships obtained in comparison to the generic parameterization suggested by the Mapping Manual of the United Nations Economic Commission for Europe (UNECE). The POD6 critical level of 5 mmolO3 m-2 for 5% grain yield loss was remarkably higher than the one established for bread wheat with analogous experiments, highlighting that O3 risk assessments based on bread wheat may largely overestimate the damage in the Mediterranean region where durum wheat cultivation prevails.

2.
Plants (Basel) ; 11(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956498

RESUMEN

In our previous work, durum wheat cv. Fabulis was grown over two consecutive seasons (2016-2017 and 2017-2018) in an experimental field in the north of Italy. With the aim of mitigating oxidative stress, plants were subjected to four treatments (deionized water, CHT 0.05 mg/mL, CHT-NPs, and CHT-NPs-NAC) three times during the experiment. Chitosan nanoparticles (CHT-NPs) reduced symptom severity on wheat leaves and positively influenced the final grain yield. The present work aimed at investigating whether CHT treatments and particularly N-acetyl cysteine (NAC)-loaded or -unloaded CHT-NPs, while triggering plant defense mechanisms, might also vary the nutritional and technological quality of grains. For this purpose, the grains harvested from the previous experiment were analyzed for their content in phytochemicals and for their technological properties. The results showed that CHT increased the polyphenol and tocopherol content and the reducing capacity of bran and semolina, even if the positive effect of the nano-formulation remained still unclear and slightly varied between the two years of cultivation. The positive effect against oxidative stress induced by the chitosan treatments was more evident in the preservation of both the starch pasting properties and gluten aggregation capacity, indicating that the overall technological quality of semolina was maintained. Our data confirm the role of chitosan as an elicitor of the antioxidant defense system in wheat also at the grain level.

3.
Plants (Basel) ; 11(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35406827

RESUMEN

The cuticle is the plant's outermost layer that covers the surfaces of aerial parts. This structure is composed of a variety of aliphatic molecules and is well-known for its protective role against biotic and abiotic stresses in plants. Mutants with a permeable cuticle show developmental defects such as organ fusions and altered seed germination and viability. In this study, we identified a novel maize mutant, stocky1, with unique features: lethal at the seedling stage, and showing a severely dwarfed phenotype, due to a defective cuticle. For the first time, the mutant was tentatively mapped to chromosome 5, bin 5.04. The mutant phenotype investigated in this work has the potential to contribute to the elucidation of the role of the cuticle during plant development. The possibility of controlling this trait is of relevance in the context of climate change, as it may contribute to tolerance to abiotic stresses.

4.
Arch Microbiol ; 204(3): 162, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119529

RESUMEN

Microbial-based products are a promising alternative to agrochemicals in sustainable agriculture. However, little is known about their impact on human health even if some of them, i.e., Bacillus and Paenibacillus species, have been increasingly implicated in different human diseases. In this study, 18 bacteria were isolated from 2 commercial biostimulants, and they were genotypically and phenotypically characterized to highlight specific virulence properties. Some isolated bacteria were identified as belonging to the genus Bacillus by BLAST and RDP analyses, a genus in-depth studied for plant growth-promoting ability. Moreover, 16S rRNA phylogenetic analysis showed that seven isolates grouped with Bacillus species while two and four clustered, respectively, with Neobacillus and Peribacillus. Unusually, bacterial strains belonging to Franconibacter and Stenotrophomonas were isolated from biostimulants. Although Bacillus species are generally considered nonpathogenic, most of the species have shown to swim, swarm, and produced biofilms, that can be related to bacterial virulence. The evaluation of toxins encoding genes revealed that five isolates had the potential ability to produce the enterotoxin T. In conclusion, the pathogenic potential of microorganisms included in commercial products should be deeply verified, in our opinion. The approach proposed in this study could help in this crucial step.


Asunto(s)
Bacillus , Paenibacillus , Bacillus/genética , Humanos , Paenibacillus/genética , Filogenia , Desarrollo de la Planta , ARN Ribosómico 16S/genética
5.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639149

RESUMEN

Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.


Asunto(s)
Arabidopsis/inmunología , Botrytis/patogenicidad , Resistencia a la Enfermedad/inmunología , Endo-1,4-beta Xilanasas/metabolismo , Fusarium/enzimología , Nicotiana/inmunología , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología
6.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445686

RESUMEN

Quinoin is a type 1 ribosome-inactivating protein (RIP) we previously isolated from the seeds of pseudocereal quinoa (Chenopodium quinoa) and is known as a functional food for its beneficial effects on human health. As the presence of RIPs in edible plants could be potentially risky, here we further characterised biochemically the protein (complete amino acid sequence, homologies/differences with other RIPs and three-dimensional homology modeling) and explored its possible defensive role against pathogens. Quinoin consists of 254 amino acid residues, without cysteinyl residues. As demonstrated by similarities and homology modeling, quinoin preserves the amino acid residues of the active site (Tyr75, Tyr122, Glu177, Arg180, Phe181 and Trp206; quinoin numbering) and the RIP-fold characteristic of RIPs. The polypeptide chain of quinoin contains two N-glycosylation sites at Asn115 and Asp231, the second of which appears to be linked to sugars. Moreover, by comparative MALDI-TOF tryptic peptide mapping, two differently glycosylated forms of quinoin, named pre-quinoin-1 and pre-quinoin-2 (~0.11 mg/100 g and ~0.85 mg/100 g of seeds, respectively) were characterised. Finally, quinoin possesses: (i) strong antiviral activity, both in vitro and in vivo towards Tobacco Necrosis Virus (TNV); (ii) a growth inhibition effect on the bacterial pathogens of plants; and (iii) a slight antifungal effect against two Cryphonectria parasitica strains.


Asunto(s)
Chenopodium quinoa/enzimología , Saporinas/metabolismo , Secuencia de Aminoácidos/genética , Chenopodium quinoa/metabolismo , Proteínas de Plantas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/metabolismo , Saporinas/fisiología , Semillas/enzimología , Homología de Secuencia de Aminoácido
7.
Microbiol Resour Announc ; 10(26): e0035521, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197191

RESUMEN

We report the complete genome sequence and annotation of "Candidatus Nardonella dryophthoridicola" strain NardRF, obtained by sequencing its host bacteriome, Rhynchophorus ferrugineus, using Oxford Nanopore technology.

8.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801525

RESUMEN

Lignans are the main secondary metabolites synthetized by Linum species as plant defense compounds but they are also valuable for human health, in particular, for novel therapeutics. In this work, Linum austriacum in vitro cultures, cells (Cc), adventitious roots (ARc) and hairy roots (HRc) were developed for the production of justicidin B through elicitation with methyl jasmonate (MeJA) and coronatine (COR). The performances of the cultures were evaluated for their stability, total phenols content and antioxidant ability. NMR was used to identify justicidin B and isojusticidin B and HPLC to quantify the production, highlighting ARc and HRc as the highest productive tissues. MeJA and COR treatments induced the synthesis of justicidin B more than three times and the synthesis of other compounds. RNA-sequencing and a de novo assembly of L. austriacum ARc transcriptome was generated to identify the genes activated by MeJA. Furthermore, for the first time, the intracellular localization of justicidin B in ARc was investigated through microscopic analysis. Then, HRc was chosen for small-scale production in a bioreactor. Altogether, our results improve knowledge on justicidin B pathway and cellular localization in L. austriacum for future scale-up processes.


Asunto(s)
Dioxolanos/análisis , Lino/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignanos/análisis , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Transcriptoma , Dioxolanos/aislamiento & purificación , Dioxolanos/metabolismo , Lino/genética , Lino/crecimiento & desarrollo , Perfilación de la Expresión Génica , Lignanos/aislamiento & purificación , Lignanos/metabolismo , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
9.
Plants (Basel) ; 10(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918532

RESUMEN

Modern durum wheat cultivars are more prone to ozone stress because of their high photosynthetic efficiency and leaf gas exchanges that cause a greater pollutant uptake. This, in turn, generates an increased reactive oxygen species (ROS) production that is a challenge to control by the antioxidant system of the plant, therefore affecting final yield, with a reduction up to 25%. With the aim of mitigating oxidative stress in wheat, we used chitosan nanoparticles (CHT-NPs) either unloaded or loaded with the antioxidant compound N-acetyl cysteine (NAC), on plants grown either in a greenhouse or in an open field. NAC-loaded NPs were prepared by adding 0.5 mg/mL NAC to the CHT solution before ionotropic gelation with tripolyphosphate (TTP). Greenhouse experiments evidenced that CHT-NPs and CHT-NPs-NAC were able to increase the level of the leaf antioxidant pool, particularly ascorbic acid (AsA) content. However, the results of field trials, while confirming the increase in the AsA level, at least in the first phenological stages, were less conclusive. The presence of NAC did not appear to significantly affect the leaf antioxidant pool, although the grain yield was slightly higher in NAC-treated parcels. Furthermore, both NAC-loaded and -unloaded CHT-NPs partially reduced the symptom severity and increased the weight of 1000 seeds, thus showing a moderate mitigation of ozone injury.

10.
Insects ; 12(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499057

RESUMEN

The genus Arsenophonus represents one of the most widespread clades of insect endosymbionts, including reproductive manipulators and bacteriocyte-associated primary endosymbionts. Two strains belonging to the Arsenophonus clade have been identified as insect-vectored plant pathogens of strawberry and sugar beet. The bacteria accumulate in the phloem of infected plants, ultimately causing leaf yellows and necrosis. These symbionts therefore represent excellent model systems to investigate the evolutionary transition from a purely insect-associated endosymbiont towards an insect-vectored phytopathogen. Using quantitative PCR and transmission electron microscopy, we demonstrate that 'Candidatus Phlomobacter fragariae', bacterial symbiont of the planthopper Cixius wagneri and the causative agent of Strawberry Marginal Chlorosis disease, can be transmitted from an infected strawberry plant to multiple daughter plants through stolons. Stolons are horizontally growing stems enabling the nutrient provisioning of daughter plants during their early growth phase. Our results show that Phlomobacter was abundant in the phloem sieve elements of stolons and was efficiently transmitted to daughter plants, which rapidly developed disease symptoms. From an evolutionary perspective, Phlomobacter is, therefore, not only able to survive within the plant after transmission by the insect vector, but can even be transmitted to new plant generations, independently from its ancestral insect host.

11.
Front Fungal Biol ; 2: 805739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744126

RESUMEN

Since the first experiments in 1950s, transmission electron microscopy (TEM) observations of filamentous fungi have contributed extensively to understand their structure and to reveal the mechanisms of apical growth. Additionally, also in combination with the use of affinity techniques (such as the gold complexes), several aspects of plant-fungal interactions were elucidated. Nowadays, after the huge of information obtained from -omics techniques, TEM studies and ultrastructural observations offer the possibility to support these data, considering that the full comprehension of the mechanisms at the basis of fungal morphogenesis and the interaction with other organisms is closely related to a detailed knowledge of the structural features. Here, the contribution of these approaches on fungal biology is illustrated, focusing both on hyphae cell ultrastructure and infection structures of pathogenic and mycorrhizal fungi. Moreover, a concise appendix of methods conventionally used for the study of fungal ultrastructure is provided.

12.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998313

RESUMEN

The edible mushroom Agrocybe aegerita produces a ribotoxin-like protein known as Ageritin. In this work, the gene encoding Ageritin was characterized by sequence analysis. It contains several typical features of fungal genes such as three short introns (60, 55 and 69 bp) located at the 5' region of the coding sequence and typical splice junctions. This sequence codes for a precursor of 156 amino acids (~17-kDa) containing an additional N-terminal peptide of 21 amino acid residues, absent in the purified toxin (135 amino acid residues; ~15-kDa). The presence of 17-kDa and 15-kDa forms was investigated by Western blot in specific parts of fruiting body and in mycelia of A. aegerita. Data show that the 15-kDa Ageritin is the only form retrieved in the fruiting body and the principal form in mycelium. The immunolocalization by confocal laser scanning microscopy and transmission electron microscopy proves that Ageritin has vacuolar localization in hyphae. Coupling these data with a bioinformatics approach, we suggest that the N-terminal peptide of Ageritin (not found in the purified toxin) is a new signal peptide in fungi involved in intracellular routing from endoplasmic reticulum to vacuole, necessary for self-defense of A. aegerita ribosomes from Ageritin toxicity.


Asunto(s)
Agrocybe/genética , Citotoxinas/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/genética , Micelio/metabolismo , Ribonucleasas/genética , Agrocybe/metabolismo , Agrocybe/ultraestructura , Secuencia de Aminoácidos , Biología Computacional , Citotoxinas/biosíntesis , Citotoxinas/aislamiento & purificación , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Exones , Cuerpos Fructíferos de los Hongos/ultraestructura , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/aislamiento & purificación , Expresión Génica , Intrones , Micelio/ultraestructura , Sistemas de Lectura Abierta , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Ribonucleasas/biosíntesis , Ribonucleasas/aislamiento & purificación , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo , Vacuolas/ultraestructura
13.
Toxins (Basel) ; 12(8)2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824023

RESUMEN

Using the pathosystem Phaseolus vulgaris-tobacco necrosis virus (TNV), we demonstrated that PD-L1 and PD-L4, type-1 ribosome inactivating proteins (RIPs) from leaves of Phytolacca dioica L., possess a strong antiviral activity. This activity was exerted both when the RIPs and the virus were inoculated together in the same leaf and when they were inoculated or applied separately in the adaxial and abaxial leaf surfaces. This suggests that virus inhibition would mainly occur inside plant cells at the onset of infection. Histochemical studies showed that both PD-L1 and PD-L4 were not able to induce oxidative burst and cell death in treated leaves, which were instead elicited by inoculation of the virus alone. Furthermore, when RIPs and TNV were inoculated together, no sign of H2O2 deposits and cell death were detectable, indicating that the virus could have been inactivated in a very early stage of infection, before the elicitation of a hypersensitivity reaction. In conclusion, the strong antiviral activity is likely exerted inside host cells as soon the virus disassembles to start translation of the viral genome. This activity is likely directed towards both viral and ribosomal RNA, explaining the almost complete abolition of infection when virus and RIP enter together into the cells.


Asunto(s)
Antígeno B7-H1/farmacología , Phaseolus/virología , Phytolacca/química , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Tombusviridae/efectos de los fármacos , Antivirales/farmacología , Antígeno B7-H1/aislamiento & purificación , Interacciones Microbiota-Huesped , Hojas de la Planta/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1/aislamiento & purificación
14.
Plant J ; 101(5): 1198-1220, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31648387

RESUMEN

Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Proteostasis/genética , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Transporte de Proteínas , Plantones/genética , Plantones/metabolismo
15.
Plants (Basel) ; 9(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877999

RESUMEN

Basil (Ocimum basilicum L.) is a culinary, medicinal, and ornamental plant appreciated for its antioxidant properties, mainly attributed to high content of rosmarinic acid. This species also includes purple varieties, characterized by the accumulation of anthocyanins in leaves and flowers. In this work, we compared the main morphological characteristics, the antioxidant capacity and the chemical composition in leaves, flowers, and corollas of green ('Italiano Classico') and purple ('Red Rubin' and 'Dark Opal') basil varieties. The LC-ESI-MS/MS analysis of individual compounds allowed quantifying 17 (poly)phenolic acids and 18 flavonoids, differently accumulated in leaves and flowers of the three varieties. The study revealed that in addition to rosmarinic acid, basil contains several members of the salvianolic acid family, only scarcely descripted in this species, as well as, especially in flowers, simple phenolic acids, such as 4-hydroxybenzoic acid and salvianic acid A. Moreover, the study revealed that purple leaves mainly contain highly acylated anthocyanins, while purple flowers accumulate anthocyanins with low degree of decoration. Overall, this study provides new biochemical information about the presence of not yet characterized bioactive compounds in basil that could contribute to boosting the use of this crop and to gaining new knowledge about the roles of these compounds in plant physiology.

16.
Microorganisms ; 7(2)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736387

RESUMEN

The recent and massive revival of green strategies to control plant diseases, mainly as a consequence of the Integrated Pest Management (IPM) rules issued in 2009 by the European Community and the increased consumer awareness of organic products, poses new challenges for human health and food security that need to be addressed in the near future. One of the most important green technologies is biocontrol. This approach is based on living organisms and how these biocontrol agents (BCAs) directly or indirectly interact as a community to control plant pathogens and pest. Although most BCAs have been isolated from plant microbiomes, they share some genomic features, virulence factors, and trans-kingdom infection abilities with human pathogenic microorganisms, thus, their potential impact on human health should be addressed. This evidence, in combination with the outbreaks of human infections associated with consumption of raw fruits and vegetables, opens new questions regarding the role of plants in the human pathogen infection cycle. Moreover, whether BCAs could alter the endophytic bacterial community, thereby leading to the development of new potential human pathogens, is still unclear. In this review, all these issues are debated, highlighting that the research on BCAs and their formulation should include these possible long-lasting consequences of their massive spread in the environment.

17.
PLoS One ; 14(2): e0211457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30707750

RESUMEN

The use of Beauveria bassiana in biological control of agricultural pests is mainly hampered by environmental factors, such as elevated temperatures and low humidity. These limitations, further amplified in a global warming scenario, could nullify biological control strategies based on this fungus. The identification of thermotolerant B. bassiana isolates represents a possible strategy to overcome this problem. In this study, in order to maximize the probability in the isolation of thermotolerant B. bassiana, soil samples and infected insects were collected in warm areas of Syria. The obtained fungal isolates were tested for different biological parameters (i.e., growth rate, sporulation and spore germination) at growing temperatures ranging from 20°C to 35°C. Among these isolates (eight from insects and 11 from soil samples), the five with the highest growth rate, spore production and germination at 30°C were tested for their entomopathogenicity through in vivo assays on Ephestia kuehniella larvae. Insect mortality induced by the five isolates ranged from 31% to 100%. Two isolates, one from Phyllognathus excavatus and one from soil, caused 50% of the larval mortality in less than four days, reaching values exceeding 92% in ten days. These two isolates were molecularly identified as B. bassiana sensu stricto by using three markers (i.e., ITS, Bloc and EF1-α). Considering these promising results, further studies are ongoing, testing their efficiency in field conditions as control agents for agricultural insect pests in Mediterranean and Subtropical regions.


Asunto(s)
Beauveria/fisiología , Insectos/microbiología , Control Biológico de Vectores/métodos , Animales , Beauveria/clasificación , Beauveria/genética , Beauveria/aislamiento & purificación , Proteínas Fúngicas/genética , Insectos/crecimiento & desarrollo , Larva/microbiología , Factor 1 de Elongación Peptídica/genética , Filogenia , Microbiología del Suelo , Siria , Termotolerancia , Clima Tropical
18.
Int J Food Sci Nutr ; 70(1): 30-40, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29848118

RESUMEN

In order to investigate the nutritional quality of industrial-scale sprouted versus unsprouted chickpeas and green peas, before and after cooking, the ultrastructure, chemical composition, antioxidant capacity, starch digestibility, mineral content and accessibility were analysed. Sprouting did not deeply affect raw seed structure, although after cooking starch granules appeared more porous and swelled. Chemical composition of raw sprouted seeds was not strongly affected, excepting an increase in protein (both pulses), and in free sugars (in peas; +10% and +80%, respectively, p < .05). The industrial sprouting favoured phytic acid leaching in cooking water (-35% in seeds, compared to unsprouted cooked ones, p < .05), and promoted antioxidant capacity reductions in raw and cooked seeds (-10% and -37%, respectively, p < .05). In conclusion, sprouting on an industrial-scale induced mild structural modifications in chickpeas and peas, sufficient to reduce antinutritional factors, without strongly influencing their nutritional quality. These products could represent nutritionally interesting ingredients for different dietary patterns as well as for enriched cereal-based foods.


Asunto(s)
Culinaria/métodos , Valor Nutritivo , Pisum sativum/química , Semillas/química , Antioxidantes/análisis , Fibras de la Dieta/análisis , Digestión , Minerales/análisis , Pisum sativum/citología , Ácido Fítico/análisis , Plantones/química , Semillas/citología , Almidón/química , Temperatura , Factores de Tiempo
19.
Front Plant Sci ; 9: 1112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123229

RESUMEN

Multilevel interactions among nutrients occur in the soil-plant system. Among them, Fe and Zn homeostasis in plants are of great relevance because of their importance for plant and human nutrition. However, the mechanisms underlying the interplay between Fe and Zn in plants are still poorly understood. In order to elucidate how Zn interacts with Fe homeostasis, it is crucial to assess Zn distribution either in the plant tissues or within the cells. In this study, we investigated the subcellular Zn distribution in Fe-deficient leaf cells of cucumber plants by using two different approaches: cellular fractionation coupled with inductively coupled plasma mass spectrometry (ICP/MS) and nanoscopic synchrotron X-ray fluorescence imaging. Fe-deficient leaves showed a strong accumulation of Zn as well as a strong alteration of the organelles' ultrastructure at the cellular level. The cellular fractionation-ICP/MS approach revealed that Zn accumulates in both chloroplasts and mitochondria of Fe deficient leaves. Nano-XRF imaging revealed Zn accumulation in chloroplast and mitochondrial compartments, with a higher concentration in chloroplasts. Such results show that (i) both approaches are suitable to investigate Zn distribution at the subcellular level and (ii) cellular Fe and Zn interactions take place mainly in the organelles, especially in the chloroplasts.

20.
J Exp Bot ; 69(21): 5013-5027, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30085182

RESUMEN

In the lumen of the endoplasmic reticulum (ER), prolamin storage proteins of cereal seeds form very large, ordered heteropolymers termed protein bodies (PBs), which are insoluble unless treated with alcohol or reducing agents. In maize PBs, 16-kD γ-zein locates at the interface between a core of alcohol-soluble α-zeins and the outermost layer mainly composed of the reduced-soluble 27-kD γ-zein. 16-kD γ-zein originates from 27-kD γ-zein upon whole-genome duplication and is mainly characterized by deletions in the N-terminal domain that eliminate most Pro-rich repeats and part of the Cys residues involved in inter-chain bonds. 27-kD γ-zein also forms insoluble PBs when expressed in transgenic vegetative tissues. We show that in Arabidopsis leaves, 16-kD γ-zein assembles into disulfide-linked polymers that fail to efficiently become insoluble. Instead of forming PBs, these polymers accumulate as very unusual threads that markedly enlarge the ER lumen, resembling amyloid-like fibers. Domain-swapping between the two γ-zeins indicates that the N-terminal region of 16-kD γ-zein has a dominant effect in preventing full insolubilization. Therefore, a newly evolved prolamin has lost the ability to form homotypic PBs, and has acquired a new function in the assembly of natural, heteropolymeric PBs.


Asunto(s)
Retículo Endoplásmico/metabolismo , Polímeros/metabolismo , Prolaminas/metabolismo , Zea mays/genética , Zeína/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Disulfuros/metabolismo , Evolución Molecular , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polimerizacion , Zea mays/metabolismo , Zeína/química , Zeína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA