Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751301

RESUMEN

BACKGROUNDProglucagon can be processed to glucagon-like peptide1 (GLP-1) within the islet, but its contribution to islet function in humans remains unknown. We sought to understand whether pancreatic GLP-1 alters islet function in humans and whether this is affected by type 2 diabetes.METHODSWe therefore studied individuals with and without type 2 diabetes on two occasions in random order. On one occasion, exendin 9-39, a competitive antagonist of the GLP-1 Receptor (GLP1R), was infused, while on the other, saline was infused. The tracer dilution technique ([3-3H] glucose) was used to measure glucose turnover during fasting and during a hyperglycemic clamp.RESULTSExendin 9-39 increased fasting glucose concentrations; fasting islet hormone concentrations were unchanged, but inappropriate for the higher fasting glucose observed. In people with type 2 diabetes, fasting glucagon concentrations were markedly elevated and persisted despite hyperglycemia. This impaired suppression of endogenous glucose production by hyperglycemia.CONCLUSIONThese data show that GLP1R blockade impairs islet function, implying that intra-islet GLP1R activation alters islet responses to glucose and does so to a greater degree in people with type 2 diabetes.TRIAL REGISTRATIONThis study was registered at ClinicalTrials.gov NCT04466618.FUNDINGThe study was primarily funded by NIH NIDDK DK126206. AV is supported by DK78646, DK116231 and DK126206. CDM was supported by MIUR (Italian Minister for Education) under the initiative "Departments of Excellence" (Law 232/2016).


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Hiperglucemia/metabolismo , Insulina/metabolismo
2.
Cells ; 12(9)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37174674

RESUMEN

Autologous mesenchymal stem/stromal cells (MSCs) have demonstrated important therapeutic effects in several diseases. Cardiovascular risk factors may impair MSC mitochondrial structure and function, but the underlying mechanisms remain unknown. We hypothesized that metabolic syndrome (MetS) induces epigenetic alterations in mitochondria-related genes in swine MSCs. Pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat, and DNA hydroxymethylation (5 hmC) profiles of mitochondria-related genes (MitoCarta-2.0) were analyzed by hydroxymethylated DNA immunoprecipitation and next-generation sequencing (hMeDIP-seq) in Lean- and MetS-MSCs untreated or treated with the epigenetic modulator vitamin (Vit)-C (n = 3 each). Functional analysis of genes with differential 5 hmC regions was performed using DAVID6.8. Mitochondrial structure (electron microscopy), oxidative stress, and membrane potential were assessed. hMeDIP-seq identified 172 peaks (associated with 103 mitochondrial genes) with higher and 416 peaks (associated with 165 mitochondrial genes) with lower 5 hmC levels in MetS-MSCs versus Lean-MSCs (≥2-fold, p < 0.05). Genes with higher 5 hmC levels in MetS + MSCs were primarily implicated in fatty acid metabolism, whereas those with lower 5 hmC levels were associated with electron transport chain activity. Vit-C increased 5 hmC levels in mitochondrial antioxidant genes, improved mitochondrial structure and membrane potential, and decreased oxidative stress. MetS alters 5 hmC levels of mitochondria-related genes in swine MSCs. Vit-C modulated 5 hmC levels in these genes and preserved mitochondrial structure and function in MetS-MSCs. These observations may contribute to development of strategies to overcome the deleterious effects of MetS on MSCs.


Asunto(s)
Células Madre Mesenquimatosas , Síndrome Metabólico , Porcinos , Animales , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Dieta , Epigénesis Genética
3.
Diabetes ; 72(4): 449-454, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562995

RESUMEN

Data from transgenic rodent models suggest that glucagon acts as an insulin secretagogue by signaling through the glucagon-like peptide 1 receptor (GLP-1R) present on ß-cells. However, its net contribution to physiologic insulin secretion in humans is unknown. To address this question, we studied individuals without diabetes in two separate experiments. Each subject was studied on two occasions in random order. In the first experiment, during a hyperglycemic clamp, glucagon was infused at 0.4 ng/kg/min, increasing by 0.2 ng/kg/min every hour for 5 h. On one day, exendin-9,39 (300 pmol/kg/min) was infused to block GLP-1R, while on the other, saline was infused. The insulin secretion rate (ISR) was calculated by nonparametric deconvolution from plasma concentrations of C-peptide. Endogenous glucose production and glucose disappearance were measured using the tracer-dilution technique. Glucagon concentrations, by design, did not differ between study days. Integrated ISR was lower during exendin-9,39 infusion (213 ± 26 vs. 191 ± 22 nmol/5 h, saline vs. exendin-9,39, respectively; P = 0.02). In the separate experiment, exendin-9,39 infusion, compared with saline infusion, also decreased the ß-cell secretory response to a 1-mg glucagon bolus. These data show that, in humans without diabetes, glucagon partially stimulates the ß-cell through GLP-1R.


Asunto(s)
Glucagón , Insulina , Humanos , Glucagón/metabolismo , Secreción de Insulina , Insulina/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Péptido 1 Similar al Glucagón , Glucemia , Fragmentos de Péptidos/farmacología , Glucosa/farmacología
4.
J Cardiovasc Transl Res ; 15(1): 15-26, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34269985

RESUMEN

Percutaneous transluminal renal angioplasty (PTRA) may improve cardiac function in renovascular hypertension (RVH), but its effect on the biological mechanisms implicated in cardiac damage remains unknown. We hypothesized that restoration of kidney function by PTRA ameliorates myocardial mitochondrial damage and preserves cardiac function in pigs with metabolic syndrome (MetS) and RVH. Pigs were studied after 16 weeks of MetS+RVH, MetS+RVH treated 4 weeks earlier with PTRA, and Lean and MetS Sham controls (n=6 each). Cardiac function was assessed by multi-detector CT, whereas cardiac mitochondrial morphology and function, microvascular remodeling, and injury pathways were assessed ex vivo. PTRA attenuated myocardial mitochondrial damage, improved capillary and microvascular maturity, and ameliorated oxidative stress and fibrosis, in association with attenuation of left ventricular remodeling and diastolic dysfunction. Myocardial mitochondrial damage correlated with myocardial injury and renal dysfunction. Preservation of myocardial mitochondria with PTRA can enhance cardiac recovery, underscoring its therapeutic potential in experimental MetS+RVH.


Asunto(s)
Hipertensión Renovascular , Síndrome Metabólico , Animales , Diástole , Hipertensión Renovascular/terapia , Riñón , Síndrome Metabólico/complicaciones , Mitocondrias Cardíacas , Porcinos
6.
Clin Chem ; 67(6): 876-888, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969388

RESUMEN

BACKGROUND: Among the approximately 8000 Mendelian disorders, >1000 have cutaneous manifestations. In many of these conditions, the underlying mutated genes have been identified by DNA-based techniques which, however, can overlook certain types of mutations, such as exonic-synonymous and deep-intronic sequence variants. Whole-transcriptome sequencing by RNA sequencing (RNA-seq) can identify such mutations and provide information about their consequences. METHODS: We analyzed the whole transcriptome of 40 families with different types of Mendelian skin disorders with extensive genetic heterogeneity. The RNA-seq data were examined for variant detection and prioritization, pathogenicity confirmation, RNA expression profiling, and genome-wide homozygosity mapping in the case of consanguineous families. Among the families examined, RNA-seq was able to provide information complementary to DNA-based analyses for exonic and intronic sequence variants with aberrant splicing. In addition, we tested the possibility of using RNA-seq as the first-tier strategy for unbiased genome-wide mutation screening without information from DNA analysis. RESULTS: We found pathogenic mutations in 35 families (88%) with RNA-seq in combination with other next-generation sequencing methods, and we successfully prioritized variants and found the culprit genes. In addition, as a novel concept, we propose a pipeline that increases the yield of variant calling from RNA-seq by concurrent use of genome and transcriptome references in parallel. CONCLUSIONS: Our results suggest that "clinical RNA-seq" could serve as a primary approach for mutation detection in inherited diseases, particularly in consanguineous families, provided that tissues and cells expressing the relevant genes are available for analysis.


Asunto(s)
Perfilación de la Expresión Génica , Enfermedades de la Piel , Consanguinidad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ARN/métodos , Enfermedades de la Piel/diagnóstico , Enfermedades de la Piel/genética , Secuenciación del Exoma
7.
Cells ; 10(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807246

RESUMEN

BACKGROUND: Percutaneous transluminal renal angioplasty (PTRA) confers clinical and mortality benefits in select 'high-risk' patients with renovascular disease (RVD). Intra-renal-delivered extracellular vesicles (EVs) released from mesenchymal stem/stromal cells (MSCs) protect the kidney in experimental RVD, but have not been compared side-by-side to clinically applied interventions, such as PTRA. We hypothesized that MSC-derived EVs can comparably protect the post-stenotic kidney via direct tissue effects. METHODS: Five groups of pigs (n = 6 each) were studied after 16 weeks of RVD, RVD treated 4 weeks earlier with either PTRA or MSC-derived EVs, and normal controls. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multi-detector CT, and renal microvascular architecture (3D micro CT) and injury pathways ex vivo. RESULTS: Despite sustained hypertension, EVs conferred greater improvement of intra-renal microvascular and peritubular capillary density compared to PTRA, associated with attenuation of renal inflammation, oxidative stress, and tubulo-interstitial fibrosis. Nevertheless, stenotic kidney RBF and GFR similarly rose in both PTRA- and EV-treated pigs compared RVD + Sham. mRNA sequencing reveled that EVs were enriched with pro-angiogenic, anti-inflammatory, and antioxidants genes. CONCLUSION: MSC-derived EVs elicit a better preservation of the stenotic kidney microvasculature and greater attenuation of renal injury and fibrosis compared to PTRA, possibly partly attributed to their cargo of vasculo-protective genes. Yet, both strategies similarly improve renal hemodynamics and function. These observations shed light on diverse mechanisms implicated in improvement of post-stenotic kidney function and position EVs as a promising therapeutic intervention in RVD.


Asunto(s)
Vesículas Extracelulares/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Riñón/irrigación sanguínea , Células Madre Mesenquimatosas/metabolismo , Microvasos/patología , Circulación Renal , Animales , Vesículas Extracelulares/genética , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/patología , Riñón/lesiones , Riñón/patología , Estrés Oxidativo , Porcinos
8.
J Cell Physiol ; 236(5): 4036-4049, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33151557

RESUMEN

Percutaneous transluminal renal angioplasty (PTRA) has been used to treat renovascular disease (RVD), a chronic condition characterized by renal ischemia and metabolic abnormalities. Mitochondrial injury has been implicated as a central pathogenic mechanism in RVD, but whether it can be reversed by PTRA remains uncertain. We hypothesized that PTRA attenuates mitochondrial damage, renal injury, and dysfunction in pigs with coexisting renal artery stenosis (RAS) and metabolic syndrome (MetS). Four groups of pigs (n = 6 each) were studied after 16 weeks of diet-induced MetS and RAS (MetS + RAS), MetS + RAS treated 4 weeks earlier with PTRA, and Lean and MetS Sham controls. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multidetector computed tomography, and renal tubular mitochondrial structure and function and renal injury ex vivo. PTRA successfully restored renal artery patency, but mean arterial pressure remained unchanged. Stenotic kidney RBF and GFR, which fell in MetS + RAS compared to MetS, rose after PTRA. PTRA attenuated MetS + RAS-induced mitochondrial structural abnormalities in tubular cells and peritubular capillary endothelial cells, decreased mitochondrial H2 02 production, and increased renal cytochrome-c oxidase-IV activity and ATP production. PTRA also improved cortical microvascular and peritubular capillary density and ameliorated tubular injury and tubulointerstitial fibrosis in the poststenotic kidney. Importantly, renal mitochondrial damage correlated with poststenotic injury and dysfunction. Renal revascularization attenuated mitochondrial injury and improved renal hemodynamics and function in swine poststenotic kidneys. This study suggests a novel mechanism by which PTRA might be relatively effective in ameliorating mitochondrial damage and improving renal function in coexisting MetS and RAS.


Asunto(s)
Angioplastia , Riñón/cirugía , Síndrome Metabólico/complicaciones , Síndrome Metabólico/cirugía , Mitocondrias/patología , Obstrucción de la Arteria Renal/complicaciones , Obstrucción de la Arteria Renal/cirugía , Animales , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Fibrosis , Hemodinámica , Hipertensión/complicaciones , Hipertensión/fisiopatología , Riñón/irrigación sanguínea , Riñón/patología , Riñón/fisiopatología , Síndrome Metabólico/fisiopatología , Mitocondrias/ultraestructura , Estrés Oxidativo , Obstrucción de la Arteria Renal/fisiopatología , Porcinos
9.
Stem Cells Int ; 2020: 8845635, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281903

RESUMEN

BACKGROUND: Coexisting metabolic syndrome (MetS) and renal artery stenosis (RAS) are linked to poor renal outcomes. Mesenchymal stem/stromal cell- (MSC-) derived extracellular vesicles (EVs) from lean animals show superior ability to repair the experimental MetS+RAS kidney compared to EVs from MetS pig MSCs. We hypothesized that MetS leads to selective packaging in porcine EVs of microRNAs capable of targeting mitochondrial genes, interfering with their capacity to repair the MetS+RAS kidney. METHODS: Five groups of pigs (n = 7 each) were studied after 16 weeks of diet-induced MetS and RAS (MetS+RAS) and MetS+RAS 4 weeks after a single intrarenal delivery of EVs harvested from allogeneic adipose tissue-derived MSCs isolated from Lean or MetS pigs, and Lean or MetS sham controls. Single-kidney blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multidetector CT, whereas EV microRNA cargo, renal tubular mitochondrial structure and bioenergetics, and renal injury pathways were assessed ex vivo. RESULTS: microRNA sequencing revealed 19 dysregulated microRNAs capable of targeting several mitochondrial genes in MetS-EVs versus Lean-EVs. Lean- and MetS-EVs were detected in the stenotic kidney 4 weeks after administration. However, only MetS-EVs failed to improve renal mitochondrial density, structure, and function or attenuate oxidative stress, tubular injury, and fibrosis. Furthermore, Lean-EVs but not MetS-EVs restored RBF and GFR in MetS+RAS. CONCLUSION: MetS alters the cargo of mitochondria-related microRNAs in swine MSC-derived EVs, which might impair their capacity to repair the poststenotic kidney in MetS+RAS. These observations may contribute to develop approaches to improve the efficacy of MSC-EVs for patients with MetS.

10.
Stem Cell Rev Rep ; 16(5): 933-945, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32556943

RESUMEN

Transplantation of autologous mesenchymal stem cells (MSCs) is an effective therapy for several diseases. Mitochondria modulate several important aspects of MSC function, but might be damaged by comorbidities and cardiovascular risk factors. We hypothesized that metabolic syndrome (MetS) compromises 3D mitochondrial structure, dynamics, and function in swine adipose tissue-derived MSCs. Domestic pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat and their mitochondria analyzed using state-of-the-art Serial Block Face Electron Microscopy and 3D reconstruction. Mitochondrial dynamics (fusion/fission) were assessed by mRNA sequencing and Western blotting, and bioenergetics by membrane potential (TMRE), cytochrome-c oxidase (COX)-IV activity, and Seahorse Analyzer. Expression of mitochondria-associated microRNAs (mitomiRs) was measured by quantitative polymerase chain reaction (qPCR). MetS pigs developed obesity, hypertension, insulin resistance, and hyperlipidemia. Mitochondrial density was similar between the groups, but 3D mitochondrial and matrix volumes were lower in MetS-MSCs versus Lean-MSCs. Mitochondrial fission was higher, but fusion lower in MetS-MSCs versus Lean-MSCs, as were membrane potential, COX-IV activity, and ATP production. Contrarily, expression of the mitomiRs miR15a, miR-137, and miR-181c, which target mitochondrial genes that support mitochondrial structure, energy pathways, and dynamics, was higher in MetS-MSCs compared to Lean-MSCs, suggesting a potential to modulate their expression. MetS damages MSC 3D mitochondrial structure, dynamics, and function, and may modulate genes encoding for mitochondrial proteins. These observations support development of mitoprotective strategies to preserve the regenerative potency of MSCs and their suitability for autologous transplantation in patients with MetS.


Asunto(s)
Células Madre Mesenquimatosas/patología , Síndrome Metabólico/patología , Mitocondrias/patología , Animales , Metabolismo Energético , Femenino , Regulación de la Expresión Génica , Genes Mitocondriales , Células Madre Mesenquimatosas/ultraestructura , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Porcinos , Transcripción Genética
11.
Am J Physiol Renal Physiol ; 319(1): F19-F28, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463728

RESUMEN

Scattered tubular-like cells (STCs) are dedifferentiated surviving tubular epithelial cells that repair neighboring injured cells. Experimental renal artery stenosis (RAS) impairs STC reparative potency by inducing mitochondrial injury, but the exact mechanisms of mitochondrial damage remain unknown. We hypothesized that RAS alters expression of mitochondria-related genes, contributing to mitochondrial structural damage and dysfunction in swine STCs. CD24+/CD133+ STCs were isolated from pig kidneys after 10 wk of RAS or sham (n = 3 each). mRNA sequencing was performed, and nuclear DNA (nDNA)-encoded mitochondrial genes and mitochondrial DNA (mtDNA)-encoded genes were identified. Mitochondrial structure, ATP generation, biogenesis, and expression of mitochondria-associated microRNAs were also assessed. There were 96 nDNA-encoded mitochondrial genes upregulated and 12 mtDNA-encoded genes downregulated in RAS-STCs versus normal STCs. Functional analysis revealed that nDNA-encoded and mtDNA-encoded differentially expressed genes were primarily implicated in mitochondrial respiration and ATP synthesis. Mitochondria from RAS STCs were swollen and showed cristae remodeling and loss and decreased ATP production. Immunoreactivity of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and expression of the mitochondria-associated microRNAs miR-15a, miR-181a, miR-196a, and miR-296-3p, which target several mtDNA genes, were higher in RAS-STCs compared with normal STCs, suggesting a potential modulation of mitochondria-related gene expression. These results demonstrate that RAS induces an imbalance in mtDNA- and nDNA-mitochondrial gene expression, impairing mitochondrial structure and function in swine STCs. These observations support development of gene gain- and loss-of-function strategies to ameliorate mitochondrial damage and preserve the reparative potency of STCs in patients with renal ischemia.


Asunto(s)
Expresión Génica , Genes Mitocondriales , Isquemia/genética , Riñón/irrigación sanguínea , Mitocondrias/metabolismo , Obstrucción de la Arteria Renal/metabolismo , Animales , Femenino , Isquemia/metabolismo , Biogénesis de Organelos , Obstrucción de la Arteria Renal/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...