Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 30: 90-102, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37746243

RESUMEN

High systemic doses of adeno-associated viruses (AAVs) have been associated with immune-related serious adverse events (SAEs). Although AAV was well tolerated in preclinical models, SAEs were observed in clinical trials, indicating the need for improved preclinical models to understand AAV-induced immune responses. Here, we show that mice dual-dosed with AAV9 at 4-week intervals better recapitulate aspects of human immunity to AAV. In the model, anti-AAV9 immunoglobulin G (IgGs) increased in a linear fashion between the first and second AAV administrations. Complement activation was only observed in the presence of high levels of both AAV and anti-AAV IgG. Myeloid-derived pro-inflammatory cytokines were significantly induced in the same pattern as complement activation, suggesting that myeloid cell activation to AAV may rely on the presence of both AAV and anti-AAV IgG complexes. Single-cell RNA sequencing of peripheral blood mononuclear cells confirmed that activated monocytes were a primary source of pro-inflammatory cytokines and chemokines, which were significantly increased after a second AAV9 exposure. The same activated monocyte clusters expressed both Fcγ and complement receptors, suggesting that anti-AAV-mediated activation of myeloid cells through Fcγ receptors and/or complement receptors is one mechanism by which anti-AAV antigen complexes may prime antigen-presenting cells and amplify downstream immunity.

2.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418531

RESUMEN

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Asunto(s)
Macrófagos , Transcriptoma , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Fibrosis
3.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131694

RESUMEN

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

4.
Neurology ; 98(13): e1374-e1383, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35131904

RESUMEN

BACKGROUND AND OBJECTIVES: To evaluate the therapeutic potential of targeting highly differentiated T cells in patients with inclusion body myositis (IBM) by establishing high-resolution mapping of killer cell lectin-like receptor subfamily G member 1 (KLRG1+) within the T and natural killer (NK) cell compartments. METHODS: Blood was collected from 51 patients with IBM and 19 healthy age-matched donors. Peripheral blood mononuclear cells were interrogated by flow cytometry using a 12-marker antibody panel. The panel allowed the delineation of naive T cells (Tn), central memory T cells (Tcm), 4 stages of effector memory differentiation T cells (Tem 1-4), and effector memory re-expressing CD45RA T cells (TemRA), as well as total and subpopulations of NK cells based on the differential expression of CD16 and C56. RESULTS: We found that a population of KLRG1+ Tem and TemRA were expanded in both the CD4+ and CD8+ T-cell subpopulations in patients with IBM. KLRG1 expression in CD8+ T cells increased with T-cell differentiation with the lowest levels of expression in Tn and highest in highly differentiated TemRA and CD56+CD8+ T cells. The frequency of KLRG1+ total NK cells and subpopulations did not differ between patients with IBM and healthy donors. IBM disease duration correlated with increased CD8+ T-cell differentiation. DISCUSSION: Our findings reveal that the selective expansion of blood KLRG1+ T cells in patients with IBM is confined to the TemRA and Tem cellular compartments.


Asunto(s)
Linfocitos T CD8-positivos , Miositis por Cuerpos de Inclusión , Humanos , Memoria Inmunológica , Inmunofenotipificación , Células Asesinas Naturales/metabolismo , Leucocitos Mononucleares
5.
Cell Rep ; 35(2): 108997, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852849

RESUMEN

Despite the well-accepted view that chronic inflammation contributes to the pathogenesis of Duchenne muscular dystrophy (DMD), the function and regulation of eosinophils remain an unclear facet of type II innate immunity in dystrophic muscle. We report the observation that group 2 innate lymphoid cells (ILC2s) are present in skeletal muscle and are the principal regulators of muscle eosinophils during muscular dystrophy. Eosinophils were elevated in DMD patients and dystrophic mice along with interleukin (IL)-5, a major eosinophil survival factor that was predominantly expressed by muscle ILC2s. We also find that IL-33 was upregulated in dystrophic muscle and was predominantly produced by fibrogenic/adipogenic progenitors (FAPs). Exogenous IL-33 and IL-2 complex (IL-2c) expanded muscle ILC2s and eosinophils, decreased the cross-sectional area (CSA) of regenerating myofibers, and increased the expression of genes associated with muscle fibrosis. The deletion of ILC2s in dystrophic mice mitigated muscle eosinophilia and impaired the induction of IL-5 and fibrosis-associated genes. Our findings highlight a FAP/ILC2/eosinophil axis that promotes type II innate immunity, which influences the balance between regenerative and fibrotic responses during muscular dystrophy.


Asunto(s)
Eosinófilos/inmunología , Fibroblastos/inmunología , Interleucina-5/inmunología , Linfocitos/inmunología , Células Madre Mesenquimatosas/inmunología , Distrofia Muscular de Duchenne/inmunología , Animales , Proliferación Celular , Quimiocinas CC/genética , Quimiocinas CC/inmunología , Eosinófilos/efectos de los fármacos , Eosinófilos/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Interleucina-2/inmunología , Interleucina-2/farmacología , Interleucina-33/inmunología , Interleucina-33/farmacología , Interleucina-5/genética , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Linfocitos/efectos de los fármacos , Linfocitos/patología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...