Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
JBMR Plus ; 8(5): ziae019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634075

RESUMEN

Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that cannot easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of 3 long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from 2 populations of genetic diversity. Additionally, we compared how intrabone relationships varied in the 2 populations. Our first population of genetic diversity included 72 females and 72 males from the 8 inbred founder strains used to create the Diversity Outbred (DO) population. These 8 strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the 2 populations of genetic diversity, we show that each DO mouse does not resemble a single inbred founder, but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intrabone relationships (eg, ultimate force vs. cortical area) were mainly conserved in our 2 populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.

2.
J Orthop Res ; 42(1): 134-140, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321985

RESUMEN

During disuse, mechanical unloading causes extensive bone loss, decreasing bone volume and strength. Variations in bone mass and risk of osteoporosis are influenced by genetics; however, it remains unclear how genetic variation affects the skeletal response to unloading. We previously found that genetic variation affects the musculoskeletal response to 3 weeks of immobilization in the 8 Jackson Laboratory J:DO founder strains: C57Bl/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ. Hindlimb unloading (HLU) is the best model for simulating local and systemic contributors of disuse and therefore may have a greater impact on bones than immobilization. We hypothesized that genetic variation would affect the response to HLU across the eight founder strains. Mice of each founder strain were placed in HLU for 3 weeks, and the femurs and tibias were analyzed. There were significant HLU and mouse strain interactions on body weight, femur trabecular BV/TV, and femur ultimate force. This indicates that unloading only caused significant catabolic effects in some mouse strains. C57BL/6 J mice were most affected by unloading while other strains were more protected. There were significant HLU and mouse strain interactions on gene expression of genes encoding bone metabolism genes in the tibia. This indicates that unloading only caused significant effects on bone metabolism genes in some mouse strains. Different mouse strains respond to HLU differently, and this can be explained by genetic differences. These results suggest the outbred J:DO mice will be a powerful model for examining the effects of genetics on the skeletal response to HLU.


Asunto(s)
Ratones de Colaboración Cruzada , Suspensión Trasera , Ratones , Animales , Ratones Endogámicos C57BL , Suspensión Trasera/fisiología , Ratones Endogámicos NOD , Variación Genética
3.
Elife ; 122023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962168

RESUMEN

Quantitative traits are often complex because of the contribution of many loci, with further complexity added by environmental factors. In medical research, systems genetics is a powerful approach for the study of complex traits, as it integrates intermediate phenotypes, such as RNA, protein, and metabolite levels, to understand molecular and physiological phenotypes linking discrete DNA sequence variation to complex clinical and physiological traits. The primary purpose of this review is to describe some of the resources and tools of systems genetics in humans and rodent models, so that researchers in many areas of biology and medicine can make use of the data.


Asunto(s)
Herencia Multifactorial , Biología de Sistemas , Humanos , Herencia Multifactorial/genética , Fenotipo
4.
J Bone Miner Res ; 38(9): 1350-1363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37436066

RESUMEN

Genome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of the study was to determine if BMSCs could serve as a model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells from large populations of mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple samples and downstream genotype deconvolution, we demonstrate the scalability of this model for population-level studies. We demonstrate that dissociation of BMSCs from a heavily mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were similar from a transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical tools to confirm the biological identity of profiled cell types. SCENIC was used to reconstruct gene regulatory networks (GRNs), and we observed that cell types show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant component of bone mineral density (BMD) heritability. Together, these data suggest that BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically informative model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells in large populations. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Ratones de Colaboración Cruzada , Células Madre Mesenquimatosas , Ratones , Animales , Ratones de Colaboración Cruzada/genética , Diferenciación Celular/genética , Transcriptoma/genética , Estudio de Asociación del Genoma Completo , Análisis de Expresión Génica de una Sola Célula , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Células del Estroma/metabolismo , Células de la Médula Ósea
5.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333124

RESUMEN

Understanding the genetic basis of cortical bone traits can allow for the discovery of novel genes or biological pathways regulating bone health. Mice are the most widely used mammalian model for skeletal biology and allow for the quantification of traits that can't easily be evaluated in humans, such as osteocyte lacunar morphology. The goal of our study was to investigate the effect of genetic diversity on multi-scale cortical bone traits of three long bones in skeletally-mature mice. We measured bone morphology, mechanical properties, material properties, lacunar morphology, and mineral composition of mouse bones from two populations of genetic diversity. Additionally, we compared how intra-bone relationships varied in the two populations. Our first population of genetic diversity included 72 females and 72 males from the eight Inbred Founder strains used to create the Diversity Outbred (DO) population. These eight strains together span almost 90% of the genetic diversity found in mice (Mus musculus). Our second population of genetic diversity included 25 genetically unique, outbred females and 25 males from the DO population. We show that multi-scale cortical bone traits vary significantly with genetic background; heritability values range from 21% to 99% indicating genetic control of bone traits across length scales. We show for the first time that lacunar shape and number are highly heritable. Comparing the two populations of genetic diversity, we show each DO mouse does not resemble a single Inbred Founder but instead the outbred mice display hybrid phenotypes with the elimination of extreme values. Additionally, intra-bone relationships (e.g., ultimate force vs. cortical area) were mainly conserved in our two populations. Overall, this work supports future use of these genetically diverse populations to discover novel genes contributing to cortical bone traits, especially at the lacunar length scale.

6.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993769

RESUMEN

A major fraction of loci identified by genome-wide association studies (GWASs) lead to alterations in alternative splicing, but interpretation of how such alterations impact proteins is hindered by the technical limitations of short-read RNA-seq, which cannot directly link splicing events to full-length transcript or protein isoforms. Long-read RNA-seq represents a powerful tool to define and quantify transcript isoforms, and recently, infer protein isoform existence. Here we present a novel approach that integrates information from GWAS, splicing QTL (sQTL), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes which colocalized with BMD associations (H 4 PP ≥ 0.75). We generated deep coverage PacBio long-read RNA-seq data (N=∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were novel. By casting the colocalized sQTLs directly onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Using these data, we created one of the first proteome-scale resources defining full-length isoforms impacted by colocalized sQTLs. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense mediated decay (NMD) and 190 that potentially resulted in the expression of new protein isoforms. Finally, we identified colocalizing sQTLs in TPM2 for splice junctions between two mutually exclusive exons, and two different transcript termination sites, making it impossible to interpret without long-read RNA-seq data. siRNA mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization. We expect our approach to be widely generalizable across diverse clinical traits and accelerate system-scale analyses of protein isoform activities modulated by GWAS loci.

7.
Fertil Steril ; 119(2): 301-312, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379261

RESUMEN

OBJECTIVE: To determine whether deoxyribonucleic acid (DNA) methylation alterations exist in the first-trimester human placenta between conceptions using fertility treatments and those that do not and, if so, whether they are the result of underlying infertility or fertility treatments. We also assessed whether significant alterations led to changes in gene expression. DESIGN: We compared DNA methylation of the first-trimester placenta from singleton pregnancies that resulted in live births from unassisted, in vitro fertilization (IVF), and non-IVF fertility treatment (NIFT) conceptions using the Infinium MethylationEPIC BeadChip array. Significant CpG sites were compared with corresponding ribonucleic acid sequencing analysis in similar cohorts to determine whether methylation alterations lead to differences in gene expression. SETTING: Academic medical center. PATIENT(S): A total of 138 singleton pregnancies undergoing chorionic villus sampling resulting in a live birth were recruited for methylation analysis (56 unassisted, 38 NIFT, and 44 IVF conceptions). Ribonucleic acid-sequencing data consisted of 141 subjects (74 unassisted, 33 NIFT, and 34 IVF conceptions) of which 116 overlapped with the methylation cohort. INTERVENTION(S): In vitro fertilization-conceived pregnancy or pregnancy conceived via NIFT, such as ovulation induction and intrauterine insemination. MAIN OUTCOME MEASURE(S): Significant methylation changes at CpG sites after adjustment for multiple comparisons. The secondary outcome was gene expression changes of significant CpG sites. RESULT(S): Of the 741,145 probes analyzed in the placenta, few were significant at Bonferroni <0.05: 185 CpG sites (0.025%) significant in pregnancies conceived with the fertility treatments (NIFT + IVF) vs. unassisted conceptions; 28 in NIFT vs. unassisted; 195 in IVF vs. unassisted; and only 13 (0.0018%) in IVF vs. NIFT conceptions. Of all significant CpG sites combined, 10% (35) were located in genes with suggestive gene expression changes, but none were significant after adjustment for multiple comparisons (ribonucleic acid sequencing false discovery rate <0.05). None of the 13 differentially methylated probes in the IVF vs. NIFT placenta were located in genes with suggestive IVF vs. NIFT gene expression differences. CONCLUSION(S): Underlying infertility is the most significant contributor to the minimal differences in first-trimester placental methylation, and not the specific fertility treatment used, such as IVF.


Asunto(s)
Infertilidad , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Primer Trimestre del Embarazo , Metilación de ADN , Infertilidad/diagnóstico , Infertilidad/genética , Infertilidad/terapia , Fertilización In Vitro/efectos adversos , Nacimiento Vivo , ARN , Expresión Génica
8.
Elife ; 112022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36416764

RESUMEN

Genome-wide association studies (GWASs) for bone mineral density (BMD) in humans have identified over 1100 associations to date. However, identifying causal genes implicated by such studies has been challenging. Recent advances in the development of transcriptome reference datasets and computational approaches such as transcriptome-wide association studies (TWASs) and expression quantitative trait loci (eQTL) colocalization have proven to be informative in identifying putatively causal genes underlying GWAS associations. Here, we used TWAS/eQTL colocalization in conjunction with transcriptomic data from the Genotype-Tissue Expression (GTEx) project to identify potentially causal genes for the largest BMD GWAS performed to date. Using this approach, we identified 512 genes as significant using both TWAS and eQTL colocalization. This set of genes was enriched for regulators of BMD and members of bone relevant biological processes. To investigate the significance of our findings, we selected PPP6R3, the gene with the strongest support from our analysis which was not previously implicated in the regulation of BMD, for further investigation. We observed that Ppp6r3 deletion in mice decreased BMD. In this work, we provide an updated resource of putatively causal BMD genes and demonstrate that PPP6R3 is a putatively causal BMD GWAS gene. These data increase our understanding of the genetics of BMD and provide further evidence for the utility of combined TWAS/colocalization approaches in untangling the genetics of complex traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Ratones , Animales , Transcriptoma , Densidad Ósea/genética , Predisposición Genética a la Enfermedad
9.
Bone ; 164: 116524, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36028119

RESUMEN

There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.


Asunto(s)
Ratones de Colaboración Cruzada , Estudio de Asociación del Genoma Completo , Animales , Densidad Ósea/genética , Regeneración Ósea/genética , Huesos , Ratones de Colaboración Cruzada/genética , Femenino , Humanos , Masculino , Ratones , Fenotipo
10.
Hum Mol Genet ; 31(R1): R123-R136, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35960994

RESUMEN

Aberrant splicing underlies many human diseases, including cancer, cardiovascular diseases and neurological disorders. Genome-wide mapping of splicing quantitative trait loci (sQTLs) has shown that genetic regulation of alternative splicing is widespread. However, identification of the corresponding isoform or protein products associated with disease-associated sQTLs is challenging with short-read RNA-seq, which cannot precisely characterize full-length transcript isoforms. Furthermore, contemporary sQTL interpretation often relies on reference transcript annotations, which are incomplete. Solutions to these issues may be found through integration of newly emerging long-read sequencing technologies. Long-read sequencing offers the capability to sequence full-length mRNA transcripts and, in some cases, to link sQTLs to transcript isoforms containing disease-relevant protein alterations. Here, we provide an overview of sQTL mapping approaches, the use of long-read sequencing to characterize sQTL effects on isoforms, the linkage of RNA isoforms to protein-level functions and comment on future directions in the field. Based on recent progress, long-read RNA sequencing promises to be part of the human disease genetics toolkit to discover and treat protein isoforms causing rare and complex diseases.


Asunto(s)
Genética Humana , Isoformas de ARN , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de ARN/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
11.
MEDICC Rev ; 24(2): 35-42, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35648061

RESUMEN

INTRODUCTION: Most previous studies have examined the effects of acute psychological stress in humans based on select gene panels. The genomic approach may help identify novel genes that underline biological mechanisms of acute psychological stress responses. OBJECTIVE: This exploratory study aimed to investigate genome-wide transcriptional activity changes in response to acute psychological stress. METHODS: The sample included 40 healthy women (mean age 31.4 ± 11.6 years). Twenty-two participants had a stress experience induced by the Trier Social Stress Test (experimental group) and 18 did not (control group). Psychological stress levels and hemodynamic changes were assessed before and after the Trier Social Stress Test. Peripheral blood samples obtained before and after the Trier Social Stress Test were processed for mRNA sequencing. RESULTS: Psychological and hemodynamic stress parameters indicated that the Trier Social Stress Test induced moderate levels of stress in the experimental group. Six genes (HCG26, HCP5, HLA-F, HLA-F-AS1, LOC1019287, and SLC22A16) were up-regulated, and fi ve genes (CA1, FBXO9, SNCA, STRADB, and TRMT12) were down-regulated among those who experienced stress induction, compared with the control group. Nine genes of eleven were linked to endocrine system disorders, neurological disease, and organismal injury and abnormalities. CONCLUSIONS: Of the genes identifi ed in this study, HCP5, SLC22A16, and SNCA genes have previously been proposed as therapeutic targets for cancer and Parkinson disease. Further studies are needed to examine pathological mechanisms through which these genes mediate eff ects of psychological stress on adverse health outcomes. Such studies may ultimately identify therapeutic targets that enhance biological resilience to adverse eff ects of psychological stress.


Asunto(s)
Hidrocortisona , Estrés Psicológico , Adulto , Cuba , Femenino , Humanos , Hidrocortisona/análisis , Hidrocortisona/metabolismo , ARN Mensajero , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Adulto Joven
12.
J Bone Miner Res ; 37(8): 1500-1510, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35695880

RESUMEN

Osteoporosis, characterized by low bone mineral density (BMD), is the most common complex disease affecting bone and constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 associations influencing BMD. It has been shown that perturbations to long noncoding RNAs (lncRNAs) influence BMD and the activities of bone cells; however, the extent to which lncRNAs are involved in the genetic regulation of BMD is unknown. Here, we combined the analysis of allelic imbalance (AI) in human acetabular bone fragments with a transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization analysis using data from the Genotype-Tissue Expression (GTEx) project to identify lncRNAs potentially responsible for GWAS associations. We identified 27 lncRNAs in bone that are located in proximity to a BMD GWAS association and harbor single-nucleotide polymorphisms (SNPs) demonstrating AI. Using GTEx data we identified an additional 31 lncRNAs whose expression was associated (false discovery rate [FDR] correction < 0.05) with BMD through TWAS and had a colocalizing eQTL (regional colocalization probability [RCP] > 0.1). The 58 lncRNAs are located in 43 BMD associations. To further support a causal role for the identified lncRNAs, we show that 23 of the 58 lncRNAs are differentially expressed as a function of osteoblast differentiation. Our approach identifies lncRNAs that are potentially responsible for BMD GWAS associations and suggest that lncRNAs play a role in the genetics of osteoporosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoporosis , ARN Largo no Codificante , Densidad Ósea/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Osteoporosis/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética
13.
Physiol Behav ; 243: 113630, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710466

RESUMEN

An increase in opioid-overdose deaths was evident before the COVID-19 pandemic, and has escalated since its onset. Fentanyl, a highly potent synthetic opioid, is the primary driver of these recent trends. The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl. Mice were tested for conditioned place preference and fentanyl-induced locomotor activity. C57BL/6J mice formed a conditioned place preference to fentanyl injections and fentanyl increased their activity. Neither effect was noted in A/J mice. We conducted RNA-sequencing on the nucleus accumbens of mice used for fentanyl-induced locomotor activity. Surprisingly, we noted few differentially expressed genes using treatment as the main factor. However many genes differed between strains. We validated differences in two genes: suppressor APC domain containing 1 (Sapcd1) and Glyoxalase 1 (Glo1), with quantitative PCR on RNA from the nucleus accumbens and prefrontal cortex (). In both regions A/J mice had significantly higher expression of both genes than did C57BL/6 J. In prefrontal cortex, fentanyl treatment decreased Glo1 mRNA. Glyoxalase 1 catalyzes the detoxification of reactive alpha-oxoaldehydes such as glyoxal and methylglyoxal, is associated with anxiety and activity levels, and its inhibition reduces alcohol intake. We suggest that future studies assess the ability of Glo1 and related metabolites to modify opioid intake.


Asunto(s)
COVID-19 , Fentanilo , Animales , Fentanilo/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Pandemias , SARS-CoV-2
14.
Sci Rep ; 11(1): 22651, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811390

RESUMEN

Significant progress has been made in elucidating genetic risk factors influencing Type 1 diabetes (T1D); however, features other than genetic variants that initiate and/or accelerate islet autoimmunity that lead to the development of clinical T1D remain largely unknown. We hypothesized that genetic and environmental risk factors can both contribute to T1D through dynamic alterations of molecular interactions in physiologic networks. To test this hypothesis, we utilized longitudinal blood transcriptomic profiles in The Environmental Determinants of Diabetes in the Young (TEDDY) study to generate gene co-expression networks. In network modules that contain immune response genes associated with T1D, we observed highly dynamic differences in module connectivity in the 600 days (~ 2 years) preceding clinical diagnosis of T1D. Our results suggest that gene co-expression is highly plastic and that connectivity differences in T1D-associated immune system genes influence the timing and development of clinical disease.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Casos y Controles , Niño , Preescolar , Biología Computacional , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Modelos Estadísticos , Estudios Prospectivos , Biología de Sistemas , Transcriptoma
15.
Bone Rep ; 15: 101140, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34761080

RESUMEN

Mechanical unloading decreases bone volume and strength. In humans and mice, bone mineral density is highly heritable, and in mice the response to changes in loading varies with genetic background. Thus, genetic variability may affect the response of bone to unloading. As a first step to identify genes involved in bones' response to unloading, we evaluated the effects of unloading in eight inbred mouse strains: C57BL/6J, PWK/PhJ, WSB/EiJ, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, and CAST/EiJ. C57BL/6J and NOD/ShiLtJ mice had the greatest unloading-induced loss of diaphyseal cortical bone volume and strength. NZO/HlLtJ mice had the greatest metaphyseal trabecular bone loss, and C57BL/6J, WSB/EiJ, NOD/ShiLtJ, and CAST/EiJ mice had the greatest epiphyseal trabecular bone loss. Bone loss in the epiphyses displayed the highest heritability. With immobilization, mineral:matrix was reduced, and carbonate:phosphate and crystallinity were increased. A/J mice displayed the greatest unloading-induced loss of mineral:matrix. Changes in gene expression in response to unloading were greatest in NOD/ShiLtJ and CAST/EiJ mice. The most upregulated genes in response to unloading were associated with increased collagen synthesis and extracellular matrix formation. Our results demonstrate a strong differential response to unloading as a function of strain. Diversity outbred (DO) mice are a high-resolution mapping population derived from these eight inbred founder strains. These results suggest DO mice will be highly suited for examining the genetic basis of the skeletal response to unloading.

16.
World J Stem Cells ; 13(9): 1248-1277, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34630861

RESUMEN

Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed "bone regeneration". Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-ß1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the "positive" marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.

17.
J Musculoskelet Neuronal Interact ; 21(3): 387-396, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465678

RESUMEN

OBJECTIVE: To examine whether genetic variability plays a role in skeletal muscle response to disuse. METHODS: We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks. RESULTS: Response to immobilization was dependent on the strain of mice. Skeletal muscle mass/body weight was decreased by immobilization in all strains except 1291/SvImJ. Immobilization decreased absolute skeletal muscle mass in quadriceps and gastrocnemius in NOD/ShiltJ and NZO/HILtJ mice. Three weeks of immobilization resulted in an increase in quadriceps levels of atrogenes in CAST/EiJ. Immobilization resulted in an increase in quadriceps and gastrocnemius levels of Myh4 in CAST/EiJ. A similar trend was observed for Myh7 in gastrocnemius muscle. Immobilization resulted in a decrease of the p-p70S6K1/total p706SK1 ratio in quadriceps of NOD/ShiLtJ mice and the gastrocnemius of A/J mice. Immobilization did not affect the p-4EBP1/total 4EBP1 ratio in quadriceps of any of the strains examined. However, the p-4EBP1/total 4EBP1 ratio in gastrocnemius was greater in immobilized, relative to control, limbs in CAST/EiJ mice. CONCLUSION: Genetic variability affects the response of skeletal muscle to disuse.


Asunto(s)
Músculo Esquelético , Músculo Cuádriceps , Animales , Inmovilización , Ratones , Ratones Endogámicos NOD , Atrofia Muscular/patología , Músculo Cuádriceps/patología
18.
STAR Protoc ; 2(3): 100768, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467232

RESUMEN

This protocol describes the application of the "omnigenic" model of the genetic architecture of complex traits to identify novel "core" genes influencing a disease-associated phenotype. Core genes are hypothesized to directly regulate disease and may serve as therapeutic targets. This protocol leverages GWAS data, a co-expression network, and publicly available data, including the GTEx database and the International Mouse Phenotyping Consortium Database, to identify modules enriched for genes with "core-like" characteristics. For complete details on the use and execution of this protocol, please refer to Sabik et al. (2020).


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Animales , Ontología de Genes , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Desequilibrio de Ligamiento , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN
19.
Nat Commun ; 12(1): 3408, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099702

RESUMEN

Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


Asunto(s)
Densidad Ósea/genética , Osteoporosis/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Animales , Diferenciación Celular/genética , Ratones de Colaboración Cruzada , Conjuntos de Datos como Asunto , Femenino , Fémur/fisiología , Fluoresceínas/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Estudio de Asociación del Genoma Completo , Glicosiltransferasas/genética , Humanos , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Osteoblastos , Osteogénesis/genética , RNA-Seq , Análisis de la Célula Individual
20.
Curr Osteoporos Rep ; 19(4): 369-380, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34125409

RESUMEN

PURPOSE OF REVIEW: Osteoporosis constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 loci influencing bone mineral density (BMD); however, few of the causal genes have been identified. Here, we review approaches that use "-omics" data and genetic- and systems genetics-based analytical strategies to facilitate causal gene discovery. RECENT FINDINGS: The bone field is beginning to adopt approaches that are commonplace in other disease disciplines. The slower progress has been due in part to the lack of large-scale "omics" data on bone and bone cells. This is however changing, and approaches such as eQTL colocalization, transcriptome-wide association studies (TWASs), network, and integrative approaches are beginning to provide significant insight into the genes responsible for BMD GWAS associations. The use of "-omics" data to inform BMD GWASs has increased in recent years, leading to the identification of novel regulators of BMD in humans. The ultimate goal will be to use this information to develop more effective therapies to treat and ultimately prevent osteoporosis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Osteoporosis/genética , Transcriptoma/genética , Densidad Ósea/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...