Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotherapeutics ; 18(2): 1151-1165, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782863

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in exon 10 of the gene ATXN3. There are no effective pharmacological treatments for MJD, thus the identification of new pathogenic mechanisms, and the development of novel therapeutics is urgently needed. In this study, we performed a comprehensive, blind drug screen of 3942 compounds (many FDA approved) and identified small molecules that rescued the motor-deficient phenotype in transgenic ATXN3 Caenorhabditis elegans strain. Out of this screen, five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in ATXN3-CAG89 mutant worms were identified. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen, and sulfaphenazole. We then investigated how these molecules might exert their neuroprotective properties. We found that three of these compounds, chenodiol, fenbufen, and sulfaphenazole, act as modulators for TFEB/HLH-30, a key transcriptional regulator of the autophagy process, and require this gene for their neuroprotective activities. These genetic-chemical approaches, using genetic C. elegans models for MJD and the screening, are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. Positively acting compounds may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease.


Asunto(s)
Ataxina-3/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Ácido Quenodesoxicólico/administración & dosificación , Fenilbutiratos/administración & dosificación , Sulfafenazol/administración & dosificación , Animales , Animales Modificados Genéticamente , Ataxina-3/toxicidad , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/toxicidad , Evaluación Preclínica de Medicamentos/métodos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética
2.
Exp Neurol ; 337: 113544, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290777

RESUMEN

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common form of dominantly inherited ataxia worldwide. This disease is caused by an expanded CAG repeat in the coding region of ATXN3. Due to our incomplete understanding of mechanisms and molecular pathways related to this disease, there are no therapies that successfully treat core MJD patients. Therefore, the identification of new candidate targets related to this disease is needed. In this study, we performed a large-scale RNA interference (RNAi) screen of 387 transcription factor genes leading to the identification of several modifiers (suppressors and enhancers) of impaired motility phenotypes in a mutant ATXN3 transgenic C. elegans model. We showed that inactivation of one particular gene, fkh-2/FOXG1, enhanced the motility defect, neurodegeneration and reduced longevity in our MJD models. Opposite to genetic inactivation, the overexpression of fkh-2 rescued the impaired motility, shortened-lifespan, and neurodegeneration phenotypes of mutant ATXN3 transgenics. We found that overexpression of FKH-2/FOXG1 in ATXN3 mutant worms is neuroprotective. Using our transgenic ATXN3 C. elegans models and the screening of an RNAi library, we gained insights into the pathways contributing to neurodegeneration, and found that FKH-2/FOXG1 has neuroprotective activity. These findings may aid the development of novel therapeutic interventions for MJD.


Asunto(s)
Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Neuroprotección , Animales , Animales Modificados Genéticamente , Ataxina-3 , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , Terapia Genética , Humanos , Longevidad , Movimiento/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/psicología , Enfermedades Neurodegenerativas/terapia , Interferencia de ARN , Factores de Transcripción/genética
3.
Dis Model Mech ; 10(12): 1465-1480, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29061563

RESUMEN

Polyglutamine expansion diseases are a group of hereditary neurodegenerative disorders that develop when a CAG repeat in the causative genes is unstably expanded above a certain threshold. The expansion of trinucleotide CAG repeats causes hereditary adult-onset neurodegenerative disorders, such as Huntington's disease, dentatorubral-pallidoluysian atrophy, spinobulbar muscular atrophy and multiple forms of spinocerebellar ataxia (SCA). The most common dominantly inherited SCA is the type 3 (SCA3), also known as Machado-Joseph disease (MJD), which is an autosomal dominant, progressive neurological disorder. The gene causatively associated with MJD is ATXN3 Recent studies have shown that this gene modulates endoplasmic reticulum (ER) stress. We generated transgenic Caenorhabditiselegans strains expressing human ATXN3 genes in motoneurons, and animals expressing mutant ATXN3-CAG89 alleles showed decreased lifespan, impaired movement, and rates of neurodegeneration greater than wild-type ATXN3-CAG10 controls. We tested three neuroprotective compounds (Methylene Blue, guanabenz and salubrinal) believed to modulate ER stress and observed that these molecules rescued ATXN3-CAG89 phenotypes. Furthermore, these compounds required specific branches of the ER unfolded protein response (UPRER), reduced global ER and oxidative stress, and polyglutamine aggregation. We introduce new C. elegans models for MJD based on the expression of full-length ATXN3 in a limited number of neurons. Using these models, we discovered that chemical modulation of the UPRER reduced neurodegeneration and warrants investigation in mammalian models of MJD.


Asunto(s)
Ataxina-3/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Estrés del Retículo Endoplásmico , Neuronas Motoras/patología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Cinamatos/farmacología , Cinamatos/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Humanos , Longevidad , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Mutación/genética , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Estrés Oxidativo/efectos de los fármacos , Parálisis/complicaciones , Parálisis/tratamiento farmacológico , Fenotipo , Agregado de Proteínas/efectos de los fármacos , Proteínas Represoras/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Tiourea/análogos & derivados , Tiourea/farmacología , Tiourea/uso terapéutico , Transgenes , Respuesta de Proteína Desplegada/efectos de los fármacos
4.
Exp Neurol ; 293: 101-114, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28373024

RESUMEN

Autism spectrum disorder (ASD) is the most common neurodevelopmental disorder with a constantly increasing prevalence. Model organisms may be tools to identify underlying cellular and molecular mechanisms, as well as aid the discovery and development of novel therapeutic approaches. A simple animal such as the nematode Caenorhabditis elegans may provide insights into the extreme complexity of ASD genetics. Despite its potential, using C. elegans in ASD research is a controversial approach and has not yet been used extensively in this context. In this study, we present a screening approach of potential C. elegans mutants as potential ASD models. We screened these mutants for motor-deficiency phenotypes, which can be exploited to study underlying mechanisms of the disorder. Selected motor-deficient mutants were then used in a comprehensive drug screen of over 3900 compounds, including many FDA-approved and natural molecules, that were analyzed for their ability to suppress motility defects caused by ASD-associated gene orthologues. This genetic-chemical approach, i.e. establishing C. elegans models for ASD and screening of a well-characterized compound library, might be a promising first step to understand the mechanisms of how gene variations cause neuronal dysfunction, leading to ASD and other neurological disorders. Positively acting compounds could also be promising candidates for preclinical studies.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Proteínas de Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos/métodos , Pruebas Genéticas/métodos , Trastornos del Movimiento , Animales , Animales Modificados Genéticamente , Trastorno del Espectro Autista/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Trastornos del Movimiento/genética , Mutación/genética , Fenotipo
5.
Hum Mol Genet ; 25(6): 1088-99, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744324

RESUMEN

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.


Asunto(s)
Modelos Animales de Enfermedad , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans , Drosophila , Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Femenino , Humanos , Locomoción/efectos de los fármacos , Locomoción/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mutación , Fenazinas/farmacología , Fenotipo , Paraplejía Espástica Hereditaria/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...