Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Nutr ; 11: 1372982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533461

RESUMEN

A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 µg/mL Dex + 2,400 µg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 µg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.

2.
Front Neurosci ; 17: 1239009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719154

RESUMEN

Introduction: Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson's disease. The plant alkaloid "nicotine" was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear. Methods: In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice. We also established a novel humanized neuronal model of α-Syn aggregation and toxicity based on treatment of dopaminergic neurons derived from human induced pluripotent stem cells (iPSC) with α-Syn preformed fibrils (PFF) and applied this model to investigate the effects of nicotine and other compounds and their modes of action. Results and discussion: Overall, our results showed that nicotine attenuated α-Syn-provoked neuropathology in both models. Moreover, when investigating the role of nicotinic acetylcholine receptor (nAChR) signaling in nicotine's neuroprotective effects in iPSC-derived dopaminergic neurons, we observed that while α4-specific antagonists reduced the nicotine-induced calcium response, α4 agonists (e.g., AZD1446 and anatabine) mediated similar neuroprotective responses against α-Syn PFF-provoked neurodegeneration. Our results show that nicotine attenuates α-Syn-provoked neuropathology in vivo and in a humanized neuronal model of synucleinopathy and that activation of α4ß2 nicotinic receptors might mediate these neuroprotective effects.

3.
Eur J Med Chem ; 258: 115538, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37321108

RESUMEN

Hypoxia, a characteristic feature of solid tumors, develops as a result of excessive cell proliferation and rapid tumor growth exceeding the oxygen supply, and can result in angiogenesis activation, increased invasiveness, aggressiveness, and metastasis, leading to improved tumor survival and suppression of anticancer drug therapeutic impact. SLC-0111, a ureido benzenesulfonamide, is a selective human carbonic anhydrase (hCA) IX inhibitor in clinical trials for the treatment of hypoxic malignancies. Herein, we describe the design and synthesis of novel 6-arylpyridines 8a-l and 9a-d as structural analogues of SLC-0111, in the aim of exploring new selective inhibitors for the cancer-associated hCA IX isoform. The para-fluorophenyl tail in SLC-0111 was replaced by the privileged 6-arylpyridine motif. Moreover, both ortho- and meta-sulfonamide regioisomers, as well as an ethylene extended analogous were developed. All 6-arylpyridine-based SLC-0111 analogues were screened in vitro for their inhibitory potential against a panel of hCAs (hCA I, II, IV and IX isoforms) using stopped-flow CO2 hydrase assay. In addition, the anticancer activity was firstly explored against a panel of 57 cancer cell lines at the USA NCI-Developmental Therapeutic Program. Compound 8g emerged as the best anti-proliferative candidate with mean GI% value equals 44. Accordingly, a cell viability assay (MTS) for 8g was applied on colorectal HCT-116 and HT-29 cancer cell lines as well as on the healthy HUVEC cells. Thereafter, Annexin V-FITC apoptosis detection, cell cycle, TUNEL, and qRT-PCR, colony formation, and wound healing assays were applied to gain mechanistic insights and to understand the behavior of colorectal cancer cells upon the treatment of compound 8g. Also, a molecular docking analysis was conducted to provide in silico insights into the reported hCA IX inhibitory activity and selectivity.


Asunto(s)
Neoplasias Colorrectales , Sulfonamidas , Humanos , Anhidrasa Carbónica IX/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Sulfonamidas/química , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Anhidrasa Carbónica/química
4.
Org Biomol Chem ; 21(12): 2509-2515, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36880402

RESUMEN

A series of fluorescent coumarin bis-ureas 1-4 have been synthesised, and their anion transport properties studied. The compounds function as highly potent HCl co-transport agents in lipid bilayer membranes. Single crystal X-ray diffraction of compound 1 showed antiparallel stacking of the coumarin rings, stabilised by hydrogen bonds. Binding studies, using 1H-NMR titration, showed moderate chloride binding in DMSO-d6/0.5% with 1 : 1 binding mode (for transporter 1) and 1 : 2 binding mode (host: guest, for transporters 2-4). We examined the cytotoxicity of compounds 1-4 against three cancer cell lines, lung adenocarcinoma (A549), colon adenocarcinoma (SW620) and breast adenocarcinoma (MCF-7). The most lipophilic transporter, 4 showed a cytotoxic effect against all three cancer cell lines. Cellular fluorescence studies showed compound 4 crossed the plasma membrane and localised in the cytoplasm after a short time. Interestingly, compound 4, lacking any lysosome targeting groups, was co-localised with LysoTracker Red at 4 and 8 h in the lysosome. Cellular anion transport of compound 4 was assessed by measuring intracellular pH and showed a decrease in cellular pH, which may be due to the capacity of transporter 4 to co-transport HCl across biological membranes, as evidenced by the liposomal studies.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Humanos , Línea Celular Tumoral , Muerte Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Aniones/química , Cumarinas/farmacología , Concentración de Iones de Hidrógeno
5.
Nat Mach Intell ; 4(12): 1174-1184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36567960

RESUMEN

Medicines based on messenger RNA (mRNA) hold immense potential, as evidenced by their rapid deployment as COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine learning competition ('Stanford OpenVaccine') on Kaggle, involving single-nucleotide resolution measurements on 6,043 diverse 102-130-nucleotide RNA constructs that were themselves solicited through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less than 6 months, and 41% of nucleotide-level predictions from the winning model were within experimental error of the ground truth measurement. Furthermore, these models generalized to blindly predicting orthogonal degradation data on much longer mRNA molecules (504-1,588 nucleotides) with improved accuracy compared with previously published models. These results indicate that such models can represent in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized messenger RNAs. The integration of two crowdsourcing platforms, one for dataset creation and another for machine learning, may be fruitful for other urgent problems that demand scientific discovery on rapid timescales.

6.
Eur J Med Chem ; 238: 114412, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551035

RESUMEN

In the current work, we adopted the tail/dual tail approaches to design and synthesize the benzenesulfonamide derivatives 6a-b, 8, 10a-b, 12a-b, 14, and 16 as new SLC-0111 analogs endowed with carbonic anhydrase (CA) inhibitory activity. All the prepared benzenesulfonamide derivatives were tested for their inhibitory action towards hCA isoforms; hCA I, II, IX, and XII. The results revealed their ability to affect the examined isoforms in variable degrees with KI ranges: 49.3-6459 nM for CA I, 5.1-4171 nM for CA II, 9.4-945.1 nM for CA IX, and 5.2-1159 nM for CA XII. As expected, appending a second hydrophilic tail (ethanolamine) in compound 16 significantly enhanced the inhibitory activities towards hCA IX and hCA XII isoforms by about 5-fold in comparison to its single tail analogue 6c (KI = 51.5 and 28.2 nM for 6cvs. 10.2 and 5.2 nM for 16, respectively). Moreover, SAR analysis pointed out the significance of grafting the sulfamoyl functionality at para-position, as well as the incorporation of a bulky hydrophobic tail for CA inhibitory activity. The most potent hCA IX inhibitors (6f and 16) displayed efficient cell growth inhibitory activity against breast cancer cell lines; T-47D (IC50 = 19 and 10.9 µM, respectively) and MCF-7 (IC50 = 7.5 and 5.7 µM, respectively).


Asunto(s)
Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Proliferación Celular , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas , Bencenosulfonamidas
7.
J Parkinsons Dis ; 12(5): 1449-1462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527570

RESUMEN

BACKGROUND: The development of therapeutics for Parkinson's disease (PD) requires the establishment of biomarker assays to enable stratifying patients, monitoring disease progression, and assessing target engagement. Attempts to develop diagnostic assays based on detecting levels of the α-synuclein (αSYN) protein, a central player in the pathogenesis of PD, have yielded inconsistent results. OBJECTIVE: To determine whether the three commercial kits that have been extensively used for total αSYN quantification in human biological fluids (from Euroimmun, MSD, and Biolegend) are capable of capturing the diversity and complexity of relevant αSYN proteoforms. METHODS: We investigated and compared the ability of the different assays to detect the diversity of αSYN proteoforms using a library of αSYN proteins that comprise the majority of disease-relevant αSYN variants and post-translational modifications (PTMs). RESULTS: Our findings showed that none of the three tested immunoassays accurately capture the totality of relevant αSYN species, and that these assays are unable to recognize most disease-associated C-terminally truncated variants of αSYN. Moreover, several N-terminal truncations and phosphorylation/nitration PTMs differentially modify the level of αSYN detection and recovery by different immunoassays, and a CSF matrix effect was observed for most of the αSYN proteoforms analyzed by the three immunoassays. CONCLUSION: Our results show that the tested immunoassays do not capture the totality of the relevant αSYN species and therefore may not be appropriate tools to provide an accurate measure of total αSYN levels in samples containing modified forms of the protein. This highlights the need for next generation αSYN immunoassays that capture the diversity of αSYN proteoforms.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Biomarcadores , Humanos , Inmunoensayo , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/metabolismo
8.
Expert Opin Ther Pat ; 32(8): 885-898, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35583393

RESUMEN

INTRODUCTION: The success of the CDK4/6 inhibitor Ibrance™ (Palbociclib) as an anticancer agent inspired and directed more efforts toward the discovery of selective cyclin-dependent kinase (CDKs) inhibitors. CDK2 is a member of the CDKs family that plays an important role in regulating the progression of cells into both S- and M-phases of the cell cycle. Studies suggest that overexpression of CDK2 may be implicated in tumor growth in cancer. AREAS COVERED: This review covers the patent literature of CDK2 inhibitors published between 2017 and 2021. We searched the online databases of the European Patent Office, American Chemical Society, and Google patents. EXPERT OPINION: Developing selective CDK2 inhibitors is challenging due to the absence of a previously approved selective CDK2 inhibitor. However, ongoing efforts by Incyte Corporation and Pfizer Inc., which are reported herein, may stand out as a new starting point and bring novel information critical for the medicinal chemistry and drug design scientists in the field of CDK2 inhibitors' development.


Asunto(s)
Antineoplásicos , Quinasa 2 Dependiente de la Ciclina , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos , Neoplasias/tratamiento farmacológico , Patentes como Asunto
9.
Virology ; 570: 9-17, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35338891

RESUMEN

The repurposing of marketed drugs for new indications is an elegant strategy to quickly and cost-efficiently address unmet medical needs. The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has been shown to be a valid drug target. We performed structure-based virtual screening to assess the off-label utilization of existing drugs as novel HCV inhibitors. The virtual screen showed that tigecycline could potentially dock with high affinity to the palm site of the HCV RdRp. In vitro validation showed that tigecycline had therapeutic indexes (CC50/EC50) greater than 13 and 6.5 against infectious HCV and subgenomic HCV replicons, respectively. Furthermore, tigecycline displayed synergistic activity with sofosbuvir and daclatasvir against HCV. In silico screening identified tigecycline as a putative inhibitor of HCV RdRp, which was validated in vitro and demonstrated synergistic effects in combination with first-line anti-HCV therapies.


Asunto(s)
Hepacivirus , Hepatitis C , Antivirales/farmacología , Reposicionamiento de Medicamentos , Hepacivirus/genética , Humanos , ARN Polimerasa Dependiente del ARN/genética , Tigeciclina/farmacología , Proteínas no Estructurales Virales/genética , Replicación Viral
10.
mBio ; 13(2): e0370521, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35229634

RESUMEN

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C Crónica , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Cobicistat , Cricetinae , Progresión de la Enfermedad , Humanos , Mesocricetus , Pandemias , SARS-CoV-2 , Carga Viral
11.
Int J Pharm ; 612: 121369, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34906651

RESUMEN

Inspired by the antitubercular activity of isoniazid (INH) and 5-bromoisatin, isatin-INH hybrid (WF-208) has been synthesized as a potent agent against multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. In silico molecular docking studies indicated that DprE1, a critical enzyme in the synthesis of M. tuberculosis cell wall, is a potential enzymatic target for WF-208. The synthesized WF-208 was incorporated into a nanoparticulate system to enhance stability of the compound and to sustain its antimicrobial effect. Nanosized spherical niosomes (hydrodynamic diameter of ca. 500-600 nm) could accommodate WF-208 at a high encapsulation efficiency of 74.2%, and could impart superior stability to the compound in simulated gastric conditions. Interestingly, WF-208 had minimal inhibitory concentrations (MICs) of 7.8 and 31.3 µg/mL against MDR and XDR M. tuberculosis, respectively, whereas INH failed to demonstrate bacterial growth inhibition at the range of the tested concentrations. WF-208-loaded niosomes exhibited a 4-fold increase in the anti-mycobacterial activity as compared to the free compound (MIC of 1.9 vs. 7.8 µg/mL) against H37Rv M. tuberculosis, after three weeks of incubation with WF-208-loaded niosomes. Incorporation of the compound into nanosized vesicles allowed for a further increase in stability, potency and sustainability of the anti-mycobacterial activity, thus, providing a promising strategy for management of tuberculosis.


Asunto(s)
Isatina , Mycobacterium tuberculosis , Antituberculosos/farmacología , Isatina/farmacología , Isoniazida/farmacología , Simulación del Acoplamiento Molecular
12.
Biochim Biophys Acta Biomembr ; 1864(2): 183828, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861222

RESUMEN

Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.


Asunto(s)
Aniones/metabolismo , Cloruros/metabolismo , Nitratos/metabolismo , Protones , Tiosemicarbazonas/química , Aniones/química , Cloruros/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Nitratos/química
13.
ArXiv ; 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34671698

RESUMEN

Messenger RNA-based medicines hold immense potential, as evidenced by their rapid deployment as COVID-19 vaccines. However, worldwide distribution of mRNA molecules has been limited by their thermostability, which is fundamentally limited by the intrinsic instability of RNA molecules to a chemical degradation reaction called in-line hydrolysis. Predicting the degradation of an RNA molecule is a key task in designing more stable RNA-based therapeutics. Here, we describe a crowdsourced machine learning competition ("Stanford OpenVaccine") on Kaggle, involving single-nucleotide resolution measurements on 6043 102-130-nucleotide diverse RNA constructs that were themselves solicited through crowdsourcing on the RNA design platform Eterna. The entire experiment was completed in less than 6 months, and 41% of nucleotide-level predictions from the winning model were within experimental error of the ground truth measurement. Furthermore, these models generalized to blindly predicting orthogonal degradation data on much longer mRNA molecules (504-1588 nucleotides) with improved accuracy compared to previously published models. Top teams integrated natural language processing architectures and data augmentation techniques with predictions from previous dynamic programming models for RNA secondary structure. These results indicate that such models are capable of representing in-line hydrolysis with excellent accuracy, supporting their use for designing stabilized messenger RNAs. The integration of two crowdsourcing platforms, one for data set creation and another for machine learning, may be fruitful for other urgent problems that demand scientific discovery on rapid timescales.

14.
Appl Radiat Isot ; 175: 109794, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34111648

RESUMEN

A versatile gamma ionization chamber (VGIC) has been designed, developed and characterized, in order to study experimentally its characteristics according to the geometry of the electrodes, the volume and pressure of the filler gas for the design of a gamma sealed chamber. The tests were conducted under the IEC (International Electro-technical Commission). The results obtained in various nuclear tests of the characterization and calibration of the ionization chamber gamma VGIC developed at our laboratory were presented in this paper. Three irradiators were operated, irradiator intensive gamma (60Co: 1.25 MeV), medium intensive gamma (137Cs: 0.662 MeV) and low-intensity gamma (60Co). Saturation curves and linearity were identified and the operating range and the sensitivity of the chamber have been deducted. The current, voltage (I,V) characteristics of the chamber filled, with argon gas at 0.4 M pa pressure, for gamma ray irradiator sources were studied, the chamber was irradiated with gamma rays using different gamma sources. The plateau region is reached above 200 V and the detector operating voltage is found to be 600V. It is observed that in the plateau region the slope is constant with an increase in the exposure rate. The (1/I, 1/V) and (I, l/V2) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses.

16.
Nat Rev Neurosci ; 22(2): 111-131, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432241

RESUMEN

Lewy bodies (LBs) are α-synuclein (α-syn)-rich intracellular inclusions that are an important pathological hallmark of Parkinson disease and several other neurodegenerative diseases. Increasing evidence suggests that the aggregation of α-syn has a central role in LB formation and is one of the key processes that drive neurodegeneration and pathology progression in Parkinson disease. However, little is known about the mechanisms underlying the formation of LBs, their biochemical composition and ultrastructural properties, how they evolve and spread with disease progression, and their role in neurodegeneration. In this Review, we discuss current knowledge of α-syn pathology, including the biochemical, structural and morphological features of LBs observed in different brain regions. We also review the most used cellular and animal models of α-syn aggregation and pathology spreading in relation to the extent to which they reproduce key features of authentic LBs. Finally, we provide important insights into molecular and cellular determinants of LB formation and spreading, and highlight the critical need for more detailed and systematic characterization of α-syn pathology, at both the biochemical and structural levels. This would advance our understanding of Parkinson disease and other neurodegenerative diseases and allow the development of more-reliable disease models and novel effective therapeutic strategies.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Cuerpos de Lewy/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/metabolismo , Animales , Humanos
17.
Chem Soc Rev ; 50(4): 2737-2763, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33438685

RESUMEN

Supramolecular chemistry is a comparatively young field that to date has mainly been focused on building a foundation of fundamental understanding. With much progress in this area, researchers are seeking to apply this knowledge to the development of commercially viable products. In this review we seek to outline historical and recent developments within the field of supramolecular chemistry that have made the transition from laboratory to market, and to bring to light those technologies that we believe have commercial potential. In doing so we hope we may illuminate pathways to market for research currently being conducted.

18.
J Community Hosp Intern Med Perspect ; 10(6): 549-554, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33194127

RESUMEN

BACKGROUND: Electroencephalography (EEG) remains a vital tool in the diagnostic evaluation of patients with epilepsy (GE), however, there is scarcity of information on the yield and potential clinical variables that are associated with EEG abnormalities in people with GE. OBJECTIVE: The study aimed to evaluate the yield and pattern of EEG abnormalities in patients with GE with the view to determining factors that are independently associated with abnormal EEG in them. METHODS: We characterized EEG features and evaluated associated factors in a sample of people with GE in a Saudi population. Standard definition of interictal epileptiform discharges was used. RESULTS: A total of 1105 (77%) out of 1436 GE patients had EEG. Five hundred and ninety-five (53.85%) patients had abnormal EEG. Factors associated with EEG abnormalities before adjustment for confounders were age, gender, duration of epilepsy, and seizure frequency. However, only frequency of seizure (P = 0.0018), gender (P < 0.0001), and age (P < 0.0001) were independently associated with EEG abnormalities. CONCLUSION: The study showed a modest yield (54%) of abnormal EEG in the cohort of patients with GE. Frequency of seizure, age, and gender, independently predicted the presence of EEG abnormality in people living with GE.

19.
Angew Chem Int Ed Engl ; 59(40): 17614-17621, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32583552

RESUMEN

Anion transporters have shown potential application as anti-cancer agents that function by disrupting homeostasis and triggering cell death. In this research article we report switchable anion transport by gold complexes of anion transporters that are "switched on" in situ in the presence of the reducing agent GSH by decomplexation of gold. GSH is found in higher concentrations in tumors than in healthy tissue and hence this approach offers a strategy to target these systems to tumors.


Asunto(s)
Oro/química , Transportadores de Anión Orgánico/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Glutatión/química , Humanos , Cinética , Neoplasias/diagnóstico por imagen , Transportadores de Anión Orgánico/química , Sustancias Reductoras/química
20.
J Med Chem ; 63(6): 3317-3326, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32031797

RESUMEN

The design of three dual-tailed sulfonamide series 11a-11g, 14a-14h, and 16a-16e as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors are presented. All compounds were evaluated for inhibitory action against pharmacologically relevant human CA isoforms I, II, IV, and VII. Compounds 11a-11g emerged as potent CA inhibitors against the four tested isoforms with a significant selectivity to CA II, which is implicated in glaucoma (Ki in the range 0.36-6.9 nM). X-ray crystallographic analysis of three compounds (11a, 11d, and 11g) bound to CA II showed the validity of the adopted drug design strategy as specific moieties within the ligand structure interacted directly with the hydrophobic and hydrophilic halves of the CA II active site. Compounds 11b-11d and 11g were evaluated for their intraocular pressure-lowering effects in a rabbit model of glaucoma. 11b and 11d showed significant efficacy when compared to the clinically used drug dorzolamide.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/metabolismo , Glaucoma/tratamiento farmacológico , Presión Intraocular/efectos de los fármacos , Sulfonamidas/uso terapéutico , Animales , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/metabolismo , Anhidrasas Carbónicas/química , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Masculino , Estructura Molecular , Unión Proteica , Conejos , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...