Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Virus Res ; 344: 199353, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38490581

RESUMEN

The emergence of SARS-CoV-2 variants has led to several cases among children. However, limited information is available from North African countries. This study describes the SARS-CoV-2 strains circulating in Tunisian pediatric population during successive waves. A total of 447 complete sequences were obtained from individuals aged from 13 days to 18 years, between March 2020 and September 2022: 369 sequences generated during this study and 78 ones, available in GISAID, previously obtained from Tunisian pediatric patients. These sequences were compared with 354 and 274 ones obtained from Tunisian adults and a global dataset, respectively. The variant circulation dynamics of predominant variants were investigated during the study period using maximum-likelihood phylogenetic analysis. Among the studied population, adolescents were the predominant age group, comprising 55.26% of cases. Twenty-three lineages were identified; seven of which were not previously reported in Tunisia. Phylogenetic analysis showed a close relationship between the sequences from Tunisian adults and children. The connections of sequences from other countries were variable according to variants: close relationships were observed for Alpha, B1.160 and Omicron variants, while independent Tunisian clusters were observed for Delta and B.1.177 lineages. These findings highlight the pivotal role of children in virus transmission and underscore the impact of vaccination on virus spread. Vaccination of children, with booster doses, may be considered for better management of future emergences.


Asunto(s)
COVID-19 , Filogenia , SARS-CoV-2 , Humanos , Túnez/epidemiología , COVID-19/virología , COVID-19/epidemiología , Niño , SARS-CoV-2/genética , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Preescolar , Lactante , Adolescente , Masculino , Recién Nacido , Femenino
2.
J Clin Virol ; 170: 105633, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103483

RESUMEN

West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.


Asunto(s)
Virus del Nilo Occidental , Humanos , Virus del Nilo Occidental/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Sensibilidad y Especificidad , ARN Viral/genética
3.
Insects ; 13(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421960

RESUMEN

Based on nucleotide sequences, we re-identified representative samples of Phlebotomus perfiliewi originating from two different biogeographical areas of Tunisia, whose populations had previously been identified based on morphological criteria. A partial region of the mitochondrial DNA cytochrome b gene was targeted, and sandfly species was determined by analogy with DNA sequences available in the GenBank database via a BLAST analysis, taking into account the query coverage and percentage identity. The recognized species presents the most substantial homology with the analyzed sequence. The results of the molecular identification showed complete agreement with the morphological identifications, and Phlebotomus perfiliewi is genetically variable.

4.
Arch Microbiol ; 204(5): 238, 2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35366683

RESUMEN

INTRODUCTION: Routine laboratory screening is based on the detection of WNV specific IgM and IgG in blood and cerebrospinal fluid. Confirmation is then classically applied by real time RT-PCR (rRT-PCR) in Cerebrospinal fluid (CSF), which often gives negative results due to too short virorachia and late sampling. rRT-PCR was applied-for the first time for routine diagnosis purpose-on urine samples. METHODS: During 2018 outbreak in Tunisia, 107 patients presented WNV neurologic symptoms and were positive for WNV serology. Of them, 95 patients were sampled for urine and 35 were sampled for CSF. Qualitative rRT-PCR was performed on both type of samples. RESULTS: WNV RNA was detected in 50.5% of urine samples (48/95) and in 2.8% of CSF samples (1/35). WNV RNA was detectable from day 1 to day 41 from symptom onset, however, positive urine rate was 53.1% during the first 10 days from symptom onset. The proportions of urine-positive and urine-negative samples, based on day of collection, showed no statistical difference (p > 0.005). Cycle threshold (Ct) values ranged from 12 to 39, with no correlation with the day of collection. The lowest Ct value was detected for urine sampled on day 5 after symptom onset. A statistically significant difference was found between age groups of confirmed and non confirmed cases (p < 0.001). DISCUSSION/CONCLUSION: Our study reported the use of rRT-PCR on urine samples as a confirmatory diagnostic tool for WNV "probable cases" during an outbreak. Our findings underlined the reliability and the rapidity of this confirmatory tool, even late, and showed its superiority on CSF investigation.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , ARN Viral/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental/genética
5.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273906

RESUMEN

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks. One-Sentence SummaryExpanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.

6.
Viruses ; 14(3)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35337031

RESUMEN

Documenting the circulation dynamics of SARS-CoV-2 variants in different regions of the world is crucial for monitoring virus transmission worldwide and contributing to global efforts towards combating the pandemic. Tunisia has experienced several waves of COVID-19 with a significant number of infections and deaths. The present study provides genetic information on the different lineages of SARS-CoV-2 that circulated in Tunisia over 17 months. Lineages were assigned for 1359 samples using whole-genome sequencing, partial S gene sequencing and variant-specific real-time RT-PCR tests. Forty-eight different lineages of SARS-CoV-2 were identified, including variants of concern (VOCs), variants of interest (VOIs) and variants under monitoring (VUMs), particularly Alpha, Beta, Delta, A.27, Zeta and Eta. The first wave, limited to imported and import-related cases, was characterized by a small number of positive samples and lineages. During the second wave, a large number of lineages were detected; the third wave was marked by the predominance of the Alpha VOC, and the fourth wave was characterized by the predominance of the Delta VOC. This study adds new genomic data to the global context of COVID-19, particularly from the North African region, and highlights the importance of the timely molecular characterization of circulating strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genoma Viral , Humanos , Epidemiología Molecular , SARS-CoV-2/genética , Túnez/epidemiología
7.
Virol J ; 19(1): 54, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346227

RESUMEN

INTRODUCTION: RT-PCR testing on nasopharyngeal swabs is a key component in the COVID-19 fighting, provided to use sensitive and specific SARS-CoV2 genome targets. In this study, we aimed to evaluate and to compare 4 widely used WHO approved RT-PCR protocols on real clinical specimens, to decrypt the reasons of the diverging results and to propose recommendations for the choice of the genome targets. METHODS: 260 nasopharyngeal samples were randomly selected among the samples tested between Week-16, 2020 and week-16 2021, in the Institut Pasteur de Tunis, Tunisia, one of the referent laboratories of COVID-19 in Tunisia. All samples were tested by Charité, Berlin protocol (singleplex envelop (E) and singleplex RNA-dependent RNA polymerase (RdRp)), Hong Kong Universiy, China protocol (singleplex nucleoprotein (N) and singleplex Open reading frame Orf1b), commercial test DAAN Gene® (using the CDC China protocol), (triplex N, Orf1ab with internal control) and Institut Pasteur Paris protocol (IPP) (triplex IP2(nsp9) and IP4 (nsp12) with internal control). For IPP, a selection from samples positive by IP2 but negative with IP4 was re-tested by exactly the same protocol but this time in singleplex. New results were described and analyzed. RESULTS: In vitro analysis showed discordant results in 29.2% of cases (76 out of 260). The most discordant protocol is DAAN Gene® due to the false positive late signals with N target. Discordant results between the two protocol's targets are more frequent when viral load are low (high Ct values). Our results demonstrated that the multiplexing has worsened the sensitivity of the IP4 target. CONCLUSION: We provide concise recommendations for the choice of the genome targets, the interpretation of the results and the alarm signals which makes suspect a gene mutation.


Asunto(s)
COVID-19 , ARN Viral , COVID-19/diagnóstico , Humanos , Laboratorios , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Sensibilidad y Especificidad , Organización Mundial de la Salud
8.
Front Public Health ; 10: 990832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684874

RESUMEN

Introduction: The Delta variant posed an increased risk to global public health and rapidly replaced the pre-existent variants worldwide. In this study, the genetic diversity and the spatio-temporal dynamics of 662 SARS-CoV2 genomes obtained during the Delta wave across Tunisia were investigated. Methods: Viral whole genome and partial S-segment sequencing was performed using Illumina and Sanger platforms, respectively and lineage assignemnt was assessed using Pangolin version 1.2.4 and scorpio version 3.4.X. Phylogenetic and phylogeographic analyses were achieved using IQ-Tree and Beast programs. Results: The age distribution of the infected cases showed a large peak between 25 to 50 years. Twelve Delta sub-lineages were detected nation-wide with AY.122 being the predominant variant representing 94.6% of sequences. AY.122 sequences were highly related and shared the amino-acid change ORF1a:A498V, the synonymous mutations 2746T>C, 3037C>T, 8986C>T, 11332A>G in ORF1a and 23683C>T in the S gene with respect to the Wuhan reference genome (NC_045512.2). Spatio-temporal analysis indicates that the larger cities of Nabeul, Tunis and Kairouan constituted epicenters for the AY.122 sub-lineage and subsequent dispersion to the rest of the country. Discussion: This study adds more knowledge about the Delta variant and sub-variants distribution worldwide by documenting genomic and epidemiological data from Tunisia, a North African region. Such results may be helpful to the understanding of future COVID-19 waves and variants.


Asunto(s)
COVID-19 , Variación Genética , SARS-CoV-2 , Adulto , Animales , Humanos , Persona de Mediana Edad , COVID-19/epidemiología , COVID-19/virología , Pangolines , Filogenia , ARN Viral , SARS-CoV-2/genética , Túnez/epidemiología
9.
Microbiol Spectr ; 9(3): e0063921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756072

RESUMEN

Recent efforts have reported numerous variants that influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral characteristics, including pathogenicity, transmission rate, and detectability by molecular tests. Whole-genome sequencing based on next-generation sequencing technologies is the method of choice to identify all viral variants; however, the resources needed to use these techniques for a representative number of specimens remain limited in many low- and middle-income countries. To decrease sequencing costs, we developed a primer set allowing partial sequences to be generated in the viral S gene, enabling rapid detection of numerous variants of concern (VOCs) and variants of interest (VOIs); whole-genome sequencing is then performed on a selection of viruses based on partial sequencing results. Two hundred one nasopharyngeal specimens collected during the decreasing phase of a high-transmission COVID-19 wave in Tunisia were analyzed. The results reveal high genetic variability within the sequenced fragment and allow the detection of first introductions in the country of already-known VOCs and VOIs, as well as other variants that have interesting genomic mutations and need to be kept under surveillance. IMPORTANCE The method of choice for SARS-CoV-2 variant detection is whole-genome sequencing using next-generation sequencing (NGS) technologies. Resources for this technology remain limited in many low- and middle-income countries, where it is not possible to perform whole-genome sequencing for representative numbers of SARS-CoV-2-positive cases. In the present work, we developed a novel strategy based on a first partial Sanger screening in the S gene, which includes key mutations of the already known VOCs and VOIs, for rapid identification of these VOCs and VOIs and to help better select specimens that need to be sequenced by NGS technologies. The second step consists of whole-genome sequencing to allow a holistic view of all variants within the selected viral strains and confirm the initial classification of the strains based on partial S gene sequencing.


Asunto(s)
COVID-19/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , COVID-19/transmisión , Prueba de COVID-19/métodos , Niño , Preescolar , Femenino , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Filogenia , Serogrupo , Túnez , Secuenciación Completa del Genoma , Adulto Joven
10.
Artículo en Inglés | MEDLINE | ID: mdl-34501863

RESUMEN

Zoonotic cutaneous leishmaniasis (ZCL), endemic in Central and Southern Tunisia, is caused by Leishmania major (Kinetoplastida: Trypanosomatidae), which is transmitted by the sand fly Phlebotomus papatasi. In Tunisia, the fat sand rat Psammomys obesus and the desert jird Meriones shawi are the principal reservoir hosts of L. major. The presence of the P. papatasi vector of the L. major etiologic agent of ZCL was assessed in the vicinity of villages in endemic areas of Central Tunisia. The study was performed from September through October 2019, a period corresponding to the main peak of activity of P. papatasi. Sand flies were collected from rodent burrows located at the ecotone level, which is the transition zone between the natural environment and human settlement. Sand flies were identified to species level and tested for the presence of L. major by PCR. Our entomological survey showed that P. papatasi is the most abundant sand fly species associated with rodent burrows, and this abundance is even higher in ecotones primarily occupied by P. obesus in comparison to ecotones occupied by M. shawi. Infections with Leishmania major were detected only in P. papatasi, with an overall minimum infection rate (MIR) of 2.64%. No significant difference was observed between the MIRs in ecotones of P. obesus and of M. shawi. Incidence of ZCL in the studied areas ranged from 200 to 700 cases per 100,000 inhabitants, with a mean incidence of 385.41 per 100,000. Higher ZCL incidence was identified in ecotones of M. shawi compared to ecotones of P. obesus. ZCL cases are positively correlated with the MIRs. Considering the short flight range of P. papatasi, increases in its densities associated with burrows of P. obesus or M. shawi at the ecotone level expand the overlap of infected vectors with communities and subsequently increase ZCL incidence. Therefore, control measures should target P. papatasi populations at the ecotones.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Phlebotomus , Animales , Leishmaniasis Cutánea/epidemiología , Medición de Riesgo , Túnez/epidemiología
11.
Anal Chem ; 93(32): 11225-11232, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34338520

RESUMEN

Rapid and sensitive detection of SARS-CoV-2 virus genetic material is of paramount importance to mitigate the COVID-19 pandemic outbreak and lower the death toll. Herein, we report the design of a magnetofluorescent bioplatform for the direct and specific detection of the viral RNA of SARS-CoV-2 in the total RNA extracted from nasopharyngeal swabs of COVID-19-positive patients. A higher fluorescence response was achieved using two capture probes tethered to magnetic beads using a biotin/streptavidin linkage, targeting two specific sites in the ORF1a and S genes. Two horseradish peroxidase (HRP)-conjugated reporter sequences, complementary to the loci of the S and N genes, were used to reveal the presence of the viral RNA through the oxidation of o-phenylenediamine to fluorescent 2,3-diaminophenazine. Under optimal conditions, the bioplatform showed high selectivity and sensitivity and was able to detect as low as 0.01 ng of viral RNA (1 × 103 copies/µL) with a linear dynamic range varying from 0.01 to 3.0 ng (1 × 103 to 9 × 107 copies/µL). The bioplatform was also able to discriminate the SARS-CoV-2 RNA from those of other related viruses such as hepatitis C, West Nile, measles, and non-polio viruses. Furthermore, the developed biosensor was validated in 46 clinical samples (36 COVID-19-positive patients and 10 COVID-19-negative subjects, as assessed with the gold standard RT-qPCR method). Both sensitivity and specificity of the developed method reached 100%. Finally, making such a simple and specific method available in the field, at a primary point of care, can better help the detection of SARS-CoV-2 infection in low-resource settings.


Asunto(s)
COVID-19 , ARN Viral , Humanos , Técnicas de Amplificación de Ácido Nucleico , Pandemias , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad
12.
BMC Genomics ; 22(1): 540, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261445

RESUMEN

BACKGROUND: In Tunisia a first SARS-CoV-2 confirmed case was reported in March 03, 2020. Since then, an increase of cases number was observed from either imported or local cases. The aim of this preliminary study was to better understand the molecular epidemiology and genetic variability of SARS-CoV-2 viruses circulating in Tunisia and worldwide. METHODS: Whole genome sequencing was performed using NGS approach on six SARS. CoV-2 highly positive samples detected during the early phase of the outbreak. RESULTS: Full genomes sequences of six Tunisian SARS-CoV-2 strains were obtained from imported and locally transmission cases during the COVID-19 outbreak. Reported sequences were non-identical with 0.1% nucleotide divergence rate and clustered into 6 different clades with worldwide sequences. SNPs results favor the distribution of the reported Tunisian sequences into 3 major genotypes. These SNP mutations are critical for diagnosis and vaccine development. CONCLUSIONS: These results indicate multiple introductions of the virus in Tunisia and add new genomic data on SARS-CoV-2 at the international level.


Asunto(s)
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , Pandemias , Filogenia , Túnez/epidemiología , Secuenciación Completa del Genoma
13.
Eduan Wilkinson; Marta Giovanetti; Houriiyah Tegally; James E San; Richard Lessels; Diego Cuadros; Darren P Martin; Abdel-Rahman N Zekri; Abdoul Sangare; Abdoul Salam Ouedraogo; Abdul K Sesay; Adnene Hammami; Adrienne A Amuri; Ahmad Sayed; Ahmed Rebai; Aida Elargoubi; Alpha K Keita; Amadou A Sall; Amadou Kone; Amal Souissi; Ana V Gutierrez; Andrew Page; Arnold Lambisia; Arash Iranzadeh; Augustina Sylverken; Azeddine Ibrahimi; Bourema Kouriba; Bronwyn Kleinhans; Beatrice Dhaala; Cara Brook; Carolyn Williamson; Catherine B Pratt; Chantal G Akoua-Koffi; Charles Agoti; Collins M Moranga; James D Nokes; Daniel J Bridges; Daniel L Bugembe; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Dorcas Maruapula; Edith N Ngabana; Eddy Lusamaki; Edidah Moraa; Elmostafa El Fahime; Emerald Jacob; Emmanuel Lokilo; Enatha Mukantwari; Essia Belarbi; Etienne Simon-Loriere; Etile A Anoh; Fabian Leendertz; Faida Ajili; Fares Wasfi; Faustinos T Takawira; Fawzi Derrar; Feriel Bouzid; Francisca M Muyembe; Frank Tanser; Gabriel Mbunsu; Gaetan Thilliez; Gert van Zyl; Grit Schubert; George Githinji; Gordon A Awandare; Haruka Abe; Hela H Karray; Hellen Nansumba; Hesham A Elgahzaly; Hlanai Gumbo; Ibtihel Smeti; Ikhlass B Ayed; Imed Gaaloul; Ilhem B.B. Boubaker; Inbal Gazy; Isaac Ssewanyana; Jean B Lekana-Douk; Jean-Claude C Makangara; Jean-Jacques M Tamfum; Jean M Heraud; Jeffrey G Shaffer; Jennifer Giandhari; Jingjing Li; Jiro Yasuda; Joana Q Mends; Jocelyn Kiconco; Jonathan A Edwards; John Morobe; John N Nkengasong; John Gyapong; John T Kayiwa; Jones Gyamfi; Jouali Farah; Joyce M Ngoi; Joyce Namulondo; Julia C Andeko; Julius J Lutwama; Justin O Grady; Kefenstse A Tumedi; Khadija Said; Kim Hae-Young; Kwabena O Duedu; Lahcen Belyamani; Lavanya Singh; Leonardo de O. Martins; Madisa Mine; Mahmoud el Hefnawi; Mahjoub Aouni; Maha Mastouri; Maitshwarelo I Matsheka; Malebogo Kebabonye; Manel Turki; Martin Nyaga; Matoke Damaris; Matthew Cotten; Maureen W Mburu; Maximillian Mpina; Michael R Wiley; Mohamed A Ali; Mohamed K Khalifa; Mohamed G Seadawy; Mouna Ouadghiri; Mulenga Mwenda; Mushal Allam; My V.T. Phan; Nabil Abid; Nadia Touil; Najla Kharrat; Nalia Ismael; Nedio Mabunda; Nei-yuan Hsiao; Nelson Silochi; Ngonda Saasa; Nicola Mulder; Patrice Combe; Patrick Semanda; Paul E Oluniyi; Paulo Arnaldo; Peter K Quashie; Reuben Ayivor-Djanie; Philip A Bester; Philippe Dussart; Placide K Mbala; Pontiano Kaleebu; Richard Njouom; Richmond Gorman; Robert A Kingsley; Rosina A.A. Carr; Saba Gargouri; Saber Masmoudi; Samar Kassim; Sameh Trabelsi; Sami Kammoun; Sanaa Lemriss; Sara H Agwa; Sebastien Calvignac-Spencer; Seydou Doumbia; Sheila M Madinda; Sherihane Aryeetey; Shymaa S Ahmed; Sikhulile Moyo; Simani Gaseitsiwe; Edgar Simulundu; Sonia Lekana-Douki; Soumeya Ouangraoua; Steve A Mundeke; Sumir Panji; Sureshnee Pillay; Susan Engelbrecht; Susan Nabadda; Sylvie Behillil; Sylvie van der Werf; Tarik Aanniz; Tapfumanei Mashe; Thabo Mohale; Thanh Le-Viet; Tobias Schindler; Upasana Ramphal; Magalutcheemee Ramuth; Vagner Fonseca; Vincent Enouf; Wael H Roshdy; William Ampofo; Wolfgang Preiser; Wonderful T Choga; Yaw Bediako; Yenew K. Tebeje; Yeshnee Naidoo; Zaydah de Laurent; Sofonias K Tessema; Tulio de Oliveira.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21257080

RESUMEN

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.

14.
Ticks Tick Borne Dis ; 12(1): 101606, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189912

RESUMEN

Tick-borne encephalitis virus (TBEV) is the etiologic agent of tick-borne encephalitis (TBE) and transmitted by Ixodes ricinus (Linnaeus, 1758) in Europe. The geographical distribution of I. ricinus in the Palearctic region covers also northern Africa, including northwestern Tunisia. While the eco-epidemiology of TBE in Europe is well documented, no data concerning TBEV from northern Africa are available. We investigated whether TBEV is circulating in Tunisia. A total of 877 adult I. ricinus collected from northwestern Tunisia were examined in pools for the presence of TBEV by nRT-PCR. Viral RNA was detected in one pool of three engorged ticks, yielding a minimum infection rate of 0.11 % (1/877). Phylogenetic analysis showed that the Tunisian TBEV strain belongs to the European lineage. We report for the first time the presence of TBEV in I. ricinus from northern Africa. Therefore, more studies are needed to assess the public health importance of TBEV in northern Africa.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Ixodes/virología , Animales , Bovinos/parasitología , Femenino , Bosques , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Árboles , Túnez
15.
Transbound Emerg Dis ; 68(4): 2414-2421, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33128297

RESUMEN

West Nile Virus (WNV) is an arbovirus transmitted by mosquito bite involving birds as reservoirs, humans and equines as accidental hosts. Eight distinct lineages (WNV-1 to WNV-8) have been identified: WNV-1 and WNV-2 infect humans and animals, and WNV-3 to WNV-8 have been identified only in vectors. WNV has been implicated in neuroinvasives infections, especially meningitis and encephalitis. Tunisia experienced three epidemics in 1997, 2003 and 2012. Serological studies on humans, equines and birds as well as the detection of the virus in the vector favour a fairly frequent circulation in the country. A new epidemic has been observed in Tunisia between August and November 2018. The obtained sequences of the VWN from Tunisia 2018 grouped in a distinct monophyletic group within the Mediterranean subtype in Cluster 1, with a maximum of 2% nucleotide divergence. These sequences were clearly distinct from the Tunisia 1997, which grouped with sequences mainly from USA in Cluster 2. This work reports the genetic characterization of the Tunisia 2018 strain in comparison with the previously identified strains in Tunisia and worldwide. The epidemic virus Tunisia 2018 was genetically close to the Mediterranean basin and Eastern Europe sequences but distinct from the Tunisia 1997 closely related to the American sequences.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Aves , Brotes de Enfermedades/veterinaria , Enfermedades de los Caballos , Caballos , Humanos , Túnez/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-33374115

RESUMEN

Illegal waste disposal represents a risk health factor for vector-borne diseases by providing shelter for rodents and their ectoparasites. The presence of the Phlebotomus papatasi vector of Leishmania major, an etiologic agent of zoonotic cutaneous leishmaniasis (ZCL), was assessed at illegal waste sites located at the vicinity of villages in endemic areas of Central Tunisia. The study was performed over a two-year period over three nights from July to September 2017, and over three nights in September 2018. Household waste is deposited illegally forming dumpsites at the vicinity of each village and contains several rodent burrows of Psammomys obesus, the main reservoir host of L. major. Sandflies were collected from rodent burrows in the natural environment and in dumpsites using sticky traps and were identified at species level. Female sandflies were tested for the presence of L. major by PCR. Our entomological survey showed that Phlebotomus papatasi is the most abundant sandfly species associated with rodent burrows in these waste sites. The densities of P. papatasi in dumpsites are significantly higher compared to the natural environment. The minimum infection rate of P. papatasi with L. major in these illegal waste sites is not significantly different compared to the natural environment. Considering the short flight range of P. papatasi, increases in its densities, associated with burrows of P. obesus in illegal waste sites located at the edge of villages, expands the overlap of infected ZCL vectors with communities. Thus, illegal waste sites pose a high risk of spreading ZCL to neighboring home ranges. Waste management is an environmentally friendly method of controlling sandfly populations and should be included in an integrated management program for controlling ZCL in endemic countries.


Asunto(s)
Leishmaniasis Cutánea/transmisión , Phlebotomus/parasitología , Instalaciones de Eliminación de Residuos , Animales , Femenino , Gerbillinae , Leishmania major , Leishmaniasis Cutánea/epidemiología , Masculino , Túnez/epidemiología
17.
J Med Entomol ; 57(3): 952-956, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-31751458

RESUMEN

In the present study, we report the sympatric occurrence of Ixodes ricinus (Linnaeus, 1758) and Ixodes inopinatus (Estrada-Peña, Nava, and Petney, 2014) in Tunisia. In total, 173 adult Ixodes ticks were collected from four sites (El Jouza, Tamra, Aïn Soltan, and Jbel Zaghouan) between February and April 2017, a period corresponding to the peak of activity of I. ricinus in North Africa. The morphological characters corresponded to both species; thus, we generated a total of 28 16S rRNA sequences and compared them with previously published data in GenBank. The two species were sympatric in Tamra, Aïn Soltan, and El Jouza, whereas collections in Jbel Zaghouan only yielded I. inopinatus. These results indicate that the two taxa are widespread in the humid area of northern Tunisia. The one tick collected in Jbel Zaghouan suggests that the distribution of at least I. inopinatus might extend to the sub-humid area. More studies are needed to fully comprehend the systematic status of the two taxonomic entities using multiple molecular markers and morphological characters; integrating these two identification methods are a necessary step toward a better understanding of the ecology and epidemiology of tick-borne diseases in Tunisia.


Asunto(s)
Distribución Animal , Ixodes/fisiología , Simpatría , Animales , Ecosistema , Femenino , Masculino , ARN Ribosómico 16S/análisis , Túnez
18.
Parasite ; 26: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31198174

RESUMEN

Free-ranging spur-thighed tortoises Testudo graeca, captured in different habitat types of Northern Tunisia from March to April 2017, were examined for tick infestation: 134/147 (91%) were infested. The overall infestation intensity and abundance was 8.5 and 7.8, respectively. From these tortoises, 1174 ticks were collected, of which 10% (n = 120) taken from 18 randomly-selected tortoises were identified at the species level; the remaining ticks were examined for the presence of Crimean-Congo haemorrhagic fever virus (CCHFv) by real time RT-PCR. Only adult Hyalomma aegyptium were found, suggesting a high degree of host specificity to tortoises. No CCHFv was detected in ticks. Considering the absence of CCHFv in Hyalomma aegyptium infesting its main host, the spur-thighed tortoise, this tick species is unlikely to play a major role in the epidemiology of CCHF. Therefore, more studies are needed to investigate the circulation of this arbovirus between livestock and other tick species from North Africa.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/veterinaria , Infestaciones por Garrapatas/veterinaria , Garrapatas/virología , Tortugas/parasitología , Animales , Femenino , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Especificidad del Huésped , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Infestaciones por Garrapatas/epidemiología , Túnez/epidemiología
19.
PLoS Negl Trop Dis ; 11(3): e0005484, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28355207

RESUMEN

BACKGROUND: The Leishmania developmental life cycle within its sand fly vector occurs exclusively in the lumen of the insect's digestive tract in the presence of symbiotic bacteria. The composition of the gut microbiota and the factors that influence its composition are currently poorly understood. A set of factors, including the host and its environment, may influence this composition. It has been demonstrated that the insect gut microbiota influences the development of several human pathogens, such as Plasmodium falciparum. For sand flies and Leishmania, understanding the interactions between the parasite and the microbial environment of the vector midgut can provide new tools to control Leishmania transmission. METHODOLOGY/PRINCIPAL FINDINGS: The midguts of female Phlebotomus perniciosus from laboratory colonies or from the field were collected during the months of July, September and October 2011 and dissected. The midguts were analyzed by culture-dependent and culture-independent methods. A total of 441 and 115 cultivable isolates were assigned to 30 and 11 phylotypes from field-collected and colonized P. perniciosus, respectively. Analysis of monthly variations in microbiota composition shows a species diversity decline in October, which is to the end of the Leishmania infantum transmission period. In parallel, a compilation and a meta-analysis of all available data concerning the microbiota of two Psychodidae genera, namely Phlebotomus and Lutzomyia, was performed and compared to P. perniciosus, data obtained herein. This integrated analysis did not reveal any substantial divergences between Old and New world sand flies with regards to the midgut bacterial phyla and genera diversity. But clearly, most bacterial species (>76%) are sparsely distributed between Phlebotominae species. CONCLUSION/SIGNIFICANCE: Our results pinpoint the need for a more exhaustive understanding of the bacterial richness and abundance at the species level in Phlebotominae sand flies in order to capture the role of midgut bacteria during Leishmania development and transmission. The occurrence of Bacillus subtilis in P. perniciosus and at least two other sand fly species studied so far suggests that this bacterial species is a potential candidate for paratransgenic or biolological approaches for the control of sand fly populations in order to prevent Leishmania transmission.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Microbioma Gastrointestinal , Insectos Vectores , Phlebotomus/microbiología , Animales , Bacterias/aislamiento & purificación , Técnicas Bacteriológicas , Región Mediterránea , Metagenómica , Estaciones del Año , Análisis de Secuencia de ADN
20.
Artículo en Inglés | MEDLINE | ID: mdl-26999176

RESUMEN

The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL.


Asunto(s)
Riego Agrícola , Leishmania infantum/aislamiento & purificación , Leishmaniasis Visceral/etiología , Psychodidae/parasitología , Zoonosis/etiología , Animales , Clima , Femenino , Humanos , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/transmisión , Masculino , Dinámica Poblacional , Túnez/epidemiología , Zoonosis/epidemiología , Zoonosis/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...