Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenomics ; 14(11): 651-670, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35588246

RESUMEN

Aims: To evaluate H3K9 acetylation and gene expression profiles in three brain regions of Alzheimer's disease (AD) patients and elderly controls, and to identify AD region-specific abnormalities. Methods: Brain samples of auditory cortex, hippocampus and cerebellum from AD patients and controls underwent chromatin immunoprecipitation sequencing, RNA sequencing and network analyses. Results: We found a hyperacetylation of AD cerebellum and a slight hypoacetylation of AD hippocampus. The transcriptome revealed differentially expressed genes in the hippocampus and auditory cortex. Network analysis revealed Rho GTPase-mediated mechanisms. Conclusions: These findings suggest that some crucial mechanisms, such as Rho GTPase activity and cytoskeletal organization, are differentially dysregulated in brain regions of AD patients at the epigenetic and transcriptomic levels, and might contribute toward future research on AD pathogenesis.


Alzheimer's disease (AD) is the most common form of dementia affecting the elderly population. The onset and progression of AD are influenced by environmental factors, which are able to promote epigenetic changes on the DNA and/or the DNA-associated proteins called histones. We investigated a specific epigenetic modification of histones (H3K9 acetylation) in three brain regions of AD patients and compared them with elderly controls. We found increased levels of H3K9 acetylation in the cerebellum of AD patients, as well as a slight decrease of this modification in the hippocampus of the same patients. These brain tissues from AD patients showed abnormal gene expression patterns when compared with elderly controls. These findings contribute to understanding the molecular changes that occur in AD, and provide a basis for future research or drug development for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Acetilación , Anciano , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Humanos , Transcriptoma , Proteínas de Unión al GTP rho/genética
2.
HLA ; 98(2): 122-131, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165257

RESUMEN

The purpose of this single center retrospective study was to investigate the relationship between HLA and ABO polymorphisms and COVID-19 susceptibility and severity in kidney transplant recipients. It included 720 recipients who had COVID-19 and 1680 controls composed by recipients in follow-up who did not contact the transplantation center for COVID-19 symptoms, up to the moment of their inclusion in the study. HLA-A, -B, and -DRB1 allele groups and ABO frequencies were compared between recipients with COVID-19 (all cases, or separately mild/moderate and severe disease) and controls. The HLA association study was conducted in two case-control series and only associations that showed a p-value <0.05 in both series were considered. No HLA association regarding COVID-19 occurrence or severity met this criterion. Homozygosity at HLA-A locus was associated with COVID-19 susceptibility (odds ratio 1.4) but not severity. Blood groups A and O were associated with susceptibility and resistance to COVID-19, respectively. COVID-19 severity was associated only with older age and cardiac disease, in a multivariate analysis. We conclude that an influence of HLA on COVID-19 susceptibility is supported by the association with homozygosity at HLA-A locus but that there is no evidence for a role of any particular HLA-A, -B, or -DRB1 polymorphism. Thus, we suggest that what matters is the overall capability of an individual's HLA molecules to present SARS-CoV-2 peptides to T cells, a factor that might have a great influence on the breadth of the immune response.


Asunto(s)
COVID-19 , Anciano , Alelos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Antígenos HLA-A/genética , Cadenas HLA-DRB1/genética , Humanos , Estudios Retrospectivos , SARS-CoV-2
3.
Mol Neurobiol ; 57(6): 2563-2571, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32232768

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease, known as the most common form of dementia. In AD onset, abnormal rRNA expression has been reported to be linked in pathogenesis. Although region-specific expression patterns have previously been reported in AD, it is not until recently that the cerebellum has come under the spotlight. Specifically, it is unclear whether DNA methylation is the mechanism involved in rRNA expression regulation in AD. Hence, we sought to explore the rDNA methylation pattern of two different brain regions - auditory cortex and cerebellum - from AD and age-/sex-matched controls. Our results showed differential hypermethylation at an upstream CpG region to the rDNA promoter when comparing cerebellum controls to auditory cortex controls. This suggests a possible regulatory region from rDNA expression regulation. Moreover, when comparing between AD and control cerebellum samples, we observed hypermethylation of the rDNA promoter region as well as an increase in rDNA content. In addition, we also observed increased rRNA levels in AD compared to control cerebellum. Although still considered a pathology-free brain region, there are growing findings that continue to suggest otherwise. Indeed, cerebellum from AD has been recently described as affected by the disease, presenting a unique pattern of molecular alterations. Given that we observed that increased rDNA promoter methylation did not silence rDNA gene expression, we suggest that rDNA promoter hypermethylation is playing a protective role in rDNA genomic stability and, therefore, increasing rRNA levels in AD cerebellum.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Corteza Auditiva/metabolismo , Cerebelo/metabolismo , ADN Ribosómico/metabolismo , Epigénesis Genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Metilación de ADN , ADN Ribosómico/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA