Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Electrocardiol ; 83: 30-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38301492

RESUMEN

Electrocardiography (ECG), improved by artificial intelligence (AI), has become a potential technique for the precise diagnosis and treatment of cardiovascular disorders. The conventional ECG is a frequently used, inexpensive, and easily accessible test that offers important information about the physiological and anatomical state of the heart. However, the ECG can be interpreted differently by humans depending on the interpreter's level of training and experience, which could make diagnosis more difficult. Using AI, especially deep learning convolutional neural networks (CNNs), to look at single, continuous, and intermittent ECG leads that has led to fully automated AI models that can interpret the ECG like a human, possibly more accurately and consistently. These AI algorithms are effective non-invasive biomarkers for cardiovascular illnesses because they can identify subtle patterns and signals in the ECG that may not be readily apparent to human interpreters. The use of AI in ECG analysis has several benefits, including the quick and precise detection of problems like arrhythmias, silent cardiac illnesses, and left ventricular failure. It has the potential to help doctors with interpretation, diagnosis, risk assessment, and illness management. Aside from that, AI-enhanced ECGs have been demonstrated to boost the identification of heart failure and other cardiovascular disorders, particularly in emergency department settings, allowing for quicker and more precise treatment options. The use of AI in cardiology, however, has several limitations and obstacles, despite its potential. The effective implementation of AI-powered ECG analysis is limited by issues such as systematic bias. Biases based on age, gender, and race result from unbalanced datasets. A model's performance is impacted when diverse demographics are inadequately represented. Potentially disregarded age-related ECG variations may result from skewed age data in training sets. ECG patterns are affected by physiological differences between the sexes; a dataset that is inclined toward one sex may compromise the accuracy of the others. Genetic variations influence ECG readings, so racial diversity in datasets is significant. Furthermore, issues such as inadequate generalization, regulatory barriers, and interpretability concerns contribute to deployment difficulties. The lack of robustness in models when applied to disparate populations frequently hinders their practical applicability. The exhaustive validation required by regulatory requirements causes a delay in deployment. Difficult models that are not interpretable erode the confidence of clinicians. Diverse dataset curation, bias mitigation strategies, continuous validation across populations, and collaborative efforts for regulatory approval are essential for the successful deployment of AI ECG in clinical settings and must be undertaken to address these issues. To guarantee a safe and successful deployment in clinical practice, the use of AI in cardiology must be done with a thorough understanding of the algorithms and their limits. In summary, AI-enhanced electrocardiography has enormous potential to improve the management of cardiovascular illness by delivering precise and timely diagnostic insights, aiding clinicians, and enhancing patient outcomes. Further study and development are required to fully realize AI's promise for improving cardiology practices and patient care as technology continues to advance.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/terapia , Electrocardiografía , Inteligencia Artificial , Corazón
2.
Health Sci Rep ; 7(1): e1794, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186931

RESUMEN

Background and Aims: Artificial intelligence (AI) has emerged as a transformative force in laboratory medicine, promising significant advancements in healthcare delivery. This study explores the potential impact of AI on diagnostics and patient management within the context of laboratory medicine, with a particular focus on low- and middle-income countries (LMICs). Methods: In writing this article, we conducted a thorough search of databases such as PubMed, ResearchGate, Web of Science, Scopus, and Google Scholar within 20 years. The study examines AI's capabilities, including learning, reasoning, and decision-making, mirroring human cognitive processes. It highlights AI's adeptness at processing vast data sets, identifying patterns, and expediting the extraction of actionable insights, particularly in medical imaging interpretation and laboratory test data analysis. The research emphasizes the potential benefits of AI in early disease detection, therapeutic interventions, and personalized treatment strategies. Results: In the realm of laboratory medicine, AI demonstrates remarkable precision in interpreting medical images such as radiography, computed tomography, and magnetic resonance imaging. Its predictive analytical capabilities extend to forecasting patient trajectories and informing personalized treatment strategies using comprehensive data sets comprising clinical outcomes, patient records, and laboratory results. The study underscores the significance of AI in addressing healthcare challenges, especially in resource-constrained LMICs. Conclusion: While acknowledging the profound impact of AI on laboratory medicine in LMICs, the study recognizes challenges such as inadequate data availability, digital infrastructure deficiencies, and ethical considerations. Successful implementation necessitates substantial investments in digital infrastructure, the establishment of data-sharing networks, and the formulation of regulatory frameworks. The study concludes that collaborative efforts among stakeholders, including international organizations, governments, and nongovernmental entities, are crucial for overcoming obstacles and responsibly integrating AI into laboratory medicine in LMICs. A comprehensive, coordinated approach is essential for realizing AI's transformative potential and advancing health care in LMICs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...