Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37102890

RESUMEN

In recent years, the antimicrobial activity of chitosan-based hydrogels has been at the forefront of research in wound healing and the prevention of medical device contamination. Anti-infective therapy is a serious challenge given the increasing prevalence of bacterial resistance to antibiotics as well as their ability to form biofilms. Unfortunately, hydrogel resistance and biocompatibility do not always meet the demands of biomedical applications. As a result, the development of double-network hydrogels could be a solution to these issues. This review discusses the most recent techniques for creating double-network chitosan-based hydrogels with improved structural and functional properties. The applications of these hydrogels are also discussed in terms of tissue recovery after injuries, wound infection prevention, and biofouling of medical devices and surfaces for pharmaceutical and medical applications.

2.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361556

RESUMEN

CRISPR-Cas is an adaptive immunity system of prokaryotes, composed of CRISPR arrays and the associated proteins. The successive addition of spacer sequences in the CRISPR array has made the system a valuable molecular marker, with multiple applications. Due to the high degree of polymorphism of the CRISPR loci, their comparison in bacteria from various sources may provide insights into the evolution and spread of the CRISPR-Cas systems. The aim of this study was to establish a correlation between the enterobacterial CRISPR loci, the sequence of direct repeats (DR), and the number of spacer units, along with the geographical origin and collection source. For this purpose, 3474 genomes containing CRISPR loci from the CRISPRCasdb of Salmonella enterica, Escherichia coli, and Klebsiella pneumoniae were analyzed, and the information regarding the isolates was recorded from the NCBI database. The most prevalent was the I-E CRISPR-Cas system in all three studied taxa. E. coli also presents the I-F type, but in a much lesser percentage. The systems found in K. pneumoniae can be classified into I-E and I-E*. The I-E and I-F systems have two CRISPR loci, while I-E* has only one locus upstream of the Cas cluster. PCR primers have been developed in this study for each CRISPR locus. Distinct clustering was not evident, but statistically significant relationships occurred between the different CRISPR loci and the number of spacer units. For each of the queried taxa, the number of spacers was significantly different (p < 0.01) by origin (Africa, Asia, Australia and Oceania, Europe, North America, and South America) but was not linked to the isolation source type (human, animal, plant, food, or laboratory strains).


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enterobacteriaceae , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Animales
3.
Antibiotics (Basel) ; 11(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139992

RESUMEN

As a consequence of global demographic challenges, both the artificial and the natural environment are increasingly impacted by contaminants of emerging concern, such as bacterial pathogens and their antibiotic resistance genes (ARGs). The aim of this study was to determine the extent to which anthropogenic contamination contributes to the spread of antibiotic resistant enterococci in aquatic compartments and to explore genetic relationships among Enterococcus strains. Antimicrobial susceptibility testing (ampicillin, imipenem, norfloxacin, gentamycin, vancomycin, erythromycin, tetracycline, trimethoprim-sulfamethoxazole) of 574 isolates showed different rates of phenotypic resistance in bacteria from wastewaters (91.9-94.4%), hospital effluents (73.9%), surface waters (8.2-55.3%) and groundwater (35.1-59.1%). The level of multidrug resistance reached 44.6% in enterococci from hospital effluents. In all samples, except for hospital sewage, the predominant species were E. faecium and E. faecalis. In addition, E. avium, E. durans, E. gallinarum, E. aquimarinus and E. casseliflavus were identified. Enterococcus faecium strains carried the greatest variety of ARGs (blaTEM-1, aac(6')-Ie-aph(2″), aac(6')-Im, vanA, vanB, ermB, mefA, tetB, tetC, tetL, tetM, sul1), while E. avium displayed the highest ARG frequency. Molecular typing using the ERIC2 primer revealed substantial genetic heterogeneity, but also clusters of enterococci from different aquatic compartments. Enterococcal migration under anthropogenic pressure leads to the dispersion of clinically relevant strains into the natural environment and water resources. In conclusion, ERIC-PCR fingerprinting in conjunction with ARG profiling is a useful tool for the molecular typing of clinical and environmental Enterococcus species. These results underline the need of safeguarding water quality as a strategy to limit the expansion and progression of the impending antibiotic-resistance crisis.

4.
Microb Physiol ; 32(1-2): 2-17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34192695

RESUMEN

Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (cas)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system's impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus - SARS-CoV-2; thus, the newest and promising applications are reviewed as well.


Asunto(s)
COVID-19 , Sistemas CRISPR-Cas , Archaea/genética , Bacterias/genética , COVID-19/genética , Sistemas CRISPR-Cas/genética , Humanos , SARS-CoV-2/genética
5.
Antibiotics (Basel) ; 10(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805405

RESUMEN

Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.

6.
Curr Microbiol ; 78(4): 1227-1237, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33625570

RESUMEN

Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as blaTEM-1, blaSHV-1, blaPER-1, blaAmpC, blaVIM-1, PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The blaAmpC gene was found in P. aeruginosa, while blaTEM-1 and blaPER-1 genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates.


Asunto(s)
Pseudomonas , Ciclo Hidrológico , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Integrones/genética , Pruebas de Sensibilidad Microbiana , Pseudomonas/genética , Pseudomonas aeruginosa/genética , Aguas Residuales
7.
Germs ; 9(1): 17-27, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31119113

RESUMEN

INTRODUCTION: Members of the family Enterobacteriaceae are commonly identified in the clinical laboratory, being responsible for a substantial range of infections. This study aimed to investigate phenotypic and genotypic resistance traits in pathogenic Enterobacteriaceae isolated from outpatients in Cluj-Napoca, Romania. METHODS: Pathogenic Enterobacteriaceae were isolated from urinary tract infections, wound infections and persistent diarrhea in a private laboratory from Cluj-Napoca, Romania. Bacterial strains were biochemically identified and subjected to antimicrobial susceptibility testing by disk diffusion. The carriage of antibiotic resistance genes and of class 1 integron were assessed by PCR. RESULTS: E. coli and Enterobacter spp. were the most prevalent pathogens. High levels of resistance were observed against folate pathway inhibitors (74%), fluoroquinolones (49%) and penicillins (44%). The incidence of carbapenem resistance was 3%. The strains displaying phenotypic resistance were able to produce ß-lactamase enzymes encoded by bla TEM, bla TEM-1, bla SHV-1 and bla CTX-M, aminoglycoside modifying enzymes due to the carriage of aac(3)-IIIa, aac(6')-II and aac(6')-Ie-aph(2"), to possess fluoroquinolones resistance due to qnrS DNA gyrase protection proteins and resistance to folate pathway inhibitors due to dihydropteroate synthases encoded by sul1, sul2 and sul3 genes. The high frequency of intI1 integrase was associated to sulphonamide resistance (r=0.48; p<0.001) and also to fluoroquinolone resistance (r=0.27; p=0.011), but no significant associations in the co-occurrence of specific antibiotic resistance genes and intI1 were found in pathogenic Enterobacteriaceae. CONCLUSIONS: An important proportion of pathogenic Enterobacteriaceae were multidrug resistant, due to a wide diversity of mechanisms encoding genetic resistance.

8.
Sci Rep ; 8(1): 15272, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323184

RESUMEN

The aim of this paper is to describe a new variant of Janthinobacterium lividum - ROICE173, isolated from Antarctic snow, and to investigate the antimicrobial effect of the crude bacterial extract against 200 multi-drug resistant (MDR) bacteria of both clinical and environmental origin, displaying various antibiotic resistance patterns. ROICE173 is extremotolerant, grows at high pH (5.5-9.5), in high salinity (3%) and in the presence of different xenobiotic compounds and various antibiotics. The best violacein yield (4.59 ± 0.78 mg·g-1 wet biomass) was obtained at 22 °C, on R2 broth supplemented with 1% glycerol. When the crude extract was tested for antimicrobial activity, a clear bactericidal effect was observed on 79 strains (40%), a bacteriostatic effect on 25 strains (12%) and no effect in the case of 96 strains (48%). A very good inhibitory effect was noticed against numerous MRSA, MSSA, Enterococci, and Enterobacteriaceae isolates. For several environmental E. coli strains, the bactericidal effect was encountered at a violacein concentration below of what was previously reported. A different effect (bacteriostatic vs. bactericidal) was observed in the case of Enterobacteriaceae isolated from raw vs. treated wastewater, suggesting that the wastewater treatment process may influence the susceptibility of MDR bacteria to violacein containing bacterial extracts.


Asunto(s)
Antibacterianos/metabolismo , Antibiosis/fisiología , Chromobacterium/fisiología , Farmacorresistencia Bacteriana Múltiple , Indoles/metabolismo , Oxalobacteraceae/fisiología , Regiones Antárticas , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/uso terapéutico , Antibiosis/genética , Fraccionamiento Químico , Chromobacterium/genética , Chromobacterium/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Variación Genética , Indoles/química , Indoles/aislamiento & purificación , Indoles/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Salud Única , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Filogenia
9.
Environ Pollut ; 225: 304-315, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28347610

RESUMEN

Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 µg L-1, and the most abundant antibiotic classes were ß-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to ß-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10-2 to 1.94 × 10-1 and 1.94 × 10-2 to 4.89 × 10-2 copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55-81% decrease in antibiotic concentrations, 1-3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals.


Asunto(s)
Antibacterianos/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Aguas Residuales/microbiología , Contaminantes del Agua/análisis , Bacterias/efectos de los fármacos , Desinfección , Hospitales , Rumanía , Aguas del Alcantarillado/microbiología , Sulfonamidas , Tetraciclinas , Trimetoprim , Aguas Residuales/química
10.
Microb Ecol ; 72(4): 773-782, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27079455

RESUMEN

This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacEΔ1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Desinfectantes/farmacología , Agua Potable/microbiología , Farmacorresistencia Bacteriana/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Purificación del Agua/métodos , Secuencia de Bases , ADN Bacteriano/genética , Agua Potable/química , Enterobacteriaceae/aislamiento & purificación , Integrasas/genética , Proteínas de Transporte de Membrana/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Agua
11.
Sci Total Environ ; 443: 932-8, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23247295

RESUMEN

Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.


Asunto(s)
Biopelículas , Agua Potable/microbiología , Farmacorresistencia Microbiana/genética , Microbiología del Agua , Bacterias/genética , Transferencia de Gen Horizontal , Integrones , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...