Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Biotechnol ; 386: 10-18, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38519034

RESUMEN

Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Humanos , Investigación Biomédica Traslacional , Macrófagos , Técnicas de Cultivo de Célula
2.
Front Aging Neurosci ; 15: 1175281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181624

RESUMEN

Introduction: The efficacy of cerebrovascular reactivity (CVR) is taken as an indicator of cerebrovascular health. Methods and Results: We found that CVR tested with the inhalation of 10 % CO2 declined in the parietal cortex of 18-20-month-old rats. The CVR deficit in old rats was coincident with cerebrovascular smooth muscle cell and astrocyte senescence, revealed by the immuno-labeling of the cellular senescence marker p16 in these cells. In a next series of experiments, CVR was severely impaired in the acute phase of incomplete global forebrain ischemia produced by the bilateral occlusion of the common carotid arteries in young adult rats. In acute ischemia, CVR impairment often manifested as a perfusion drop rather than blood flow elevation in response to hypercapnia. Next, nimodipine, an L-type voltage-gated calcium channel antagonist was administered topically to rescue CVR in both aging, and cerebra ischemia. Nimodipine augmented CVR in the aged brain, but worsened CVR impairment in acute cerebral ischemia. Discussion: A careful evaluation of benefits and side effects of nimodipine is recommended, especially in acute ischemic stroke.

3.
J Neurochem ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810711

RESUMEN

Spreading depolarization (SD) is assumed to be the pathophysiological correlate of migraine aura, leading to spreading depression of activity and a long-lasting vasoconstriction known as spreading oligemia. Furthermore, cerebrovascular reactivity is reversibly impaired after SD. Here, we explored the progressive restoration of impaired neurovascular coupling to somatosensory activation during spreading oligemia. Also, we evaluated whether nimodipine treatment accelerated the recovery of impaired neurovascular coupling after SD. Male, 4-9-month-old C57BL/6 mice (n = 11) were anesthetized with isoflurane (1%-1.5%), and SD was triggered with KCl through a burr hole made at the caudal parietal bone. EEG and cerebral blood flow (CBF) were recorded minimally invasively with a silver ball electrode and transcranial laser-Doppler flowmetry, rostral to SD elicitation. The L-type voltage-gated Ca2+ channel blocker nimodipine was administered i.p. (10 mg/kg). Whisker stimulation-related evoked potentials (EVPs) and functional hyperemia were assessed under isoflurane (0.1%)-medetomidine (0.1 mg/kg i.p.) anesthesia before, and repeatedly after SD, at 15-min intervals for 75 minutes. Nimodipine accelerated the recovery of CBF from spreading oligemia (time to full recovery, 52 ± 13 vs. 70 ± 8 min, nimodipine vs. control) and exhibited a tendency to shorten the duration of the SD-related EGG depression duration. The amplitudes of EVP and functional hyperemia were markedly reduced after SD, and progressively recovered over an hour post-SD. Nimodipine exerted no impact on EVP amplitude but consistently increased the absolute level of functional hyperemia from 20 min post-CSD (93 ± 11% vs. 66 ± 13%, nimodipine vs. control). A linear, positive correlation between EVP and functional hyperemia amplitude was skewed by nimodipine. In conclusion, nimodipine facilitated CBF restoration from spreading oligemia and the recovery of functional hyperemia post-SD, which were linked to a tendency of an accelerated return of spontaneous neural activity after SD. The use of nimodipine in migraine prophylaxis is suggested to be re-visited.

4.
J Cereb Blood Flow Metab ; 43(5): 655-664, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36703609

RESUMEN

Despite successful recanalization, reperfusion failure associated with poor neurological outcomes develops in half of treated stroke patients. We explore here whether spreading depolarization (SD) is a predictor of reperfusion failure. Global forebrain ischemia/reperfusion was induced in male and female C57BL/6 mice (n = 57). SD and cerebral blood flow (CBF) changes were visualized with transcranial intrinsic optical signal and laser speckle contrast imaging. To block SD, MK801 was applied (n = 26). Neurological deficit, circle of Willis (CoW) anatomy and neuronal injury were evaluated 24 hours later. SD emerged after ischemia onset in one or both hemispheres under a perfusion threshold (CBF drop to 21.1 ± 4.6 vs. 33.6 ± 4.4%, SD vs. no SD). The failure of later reperfusion (44.4 ± 12.5%) was invariably linked to previous SD. In contrast, reperfusion was adequate (98.9 ± 7.4%) in hemispheres devoid of SD. Absence of the P1 segment of the posterior cerebral artery in the CoW favored SD occurrence and reperfusion failure. SD occurrence and reperfusion failure were associated with poor neurologic function, and neuronal necrosis 24 hours after ischemia. The inhibition of SD significantly improved reperfusion. SD occurrence during ischemia impairs later reperfusion, prognosticating poor neurological outcomes. The increased likelihood of SD occurrence is predicted by inadequate collaterals.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Accidente Cerebrovascular , Ratones , Animales , Masculino , Femenino , Ratones Endogámicos C57BL , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Infarto Cerebral , Reperfusión , Circulación Cerebrovascular/fisiología , Daño por Reperfusión/complicaciones
5.
Compr Psychiatry ; 116: 152320, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35523045

RESUMEN

BACKGROUND: Distressful and negative affective states can be associated with limited self-regulation capacities, while emotion regulation processes (e.g., rumination, negative urgency) might contribute to further depletion of self-control capacities which in turn can lead to diminished control over cannabis use. AIMS: The mediating functions of rumination (i.e., brooding and reflection), negative urgency (NU) and constructs of cannabis use regulation (i.e., cannabis protective behavioral strategies [CPBS] and cannabis refusal self-efficacy [CRSE]) were examined on the associations between anxious-depressive symptoms and cannabis use outcomes (i.e., frequency, harmful use). METHODS: The cross-sectional study used a sample of cannabis users showing signs of harmful consumption (N = 750; Males: 70.13% [N = 526]; Age: M = 29.11 [SD = 7.45]). Standardized questionnaires measured anxious-depressive symptoms, rumination, NU, CRSE, CPBS, frequency of cannabis use and harmful cannabis use. A linear regression-based, double-mediation model was performed. RESULTS: Five significant indirect effects were demonstrated in the mediation model. Single-mediation effects were shown between anxious-depressive symptoms and harmful cannabis use via CRSE and via CPBS. Double-mediation effects were presented between anxious-depressive symptoms and harmful cannabis use via reflection and CPBS, via reflection and CRSE, and via NU and CRSE. CONCLUSIONS: Emotion and cannabis use regulation pathways explained the associations between anxious-depressive symptoms and harmful cannabis use. The mediation model provided new details on how anxious-depressive symptoms, rumination and NU might lead to harmful cannabis use via regulation of cannabis use. Limited self-regulation capacities and similarities between emotion and cannabis use regulation processes might explain the identified indirect effects.


Asunto(s)
Cannabis , Depresión , Ansiedad/psicología , Cannabis/efectos adversos , Estudios Transversales , Depresión/psicología , Humanos , Masculino , Autoeficacia
6.
Int J Pharm ; 618: 121653, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35278604

RESUMEN

In the present study, we demonstrate that well-known molecular weight-dependent solubility properties of a polymer can also be used in the field of controlled drug delivery. To prove this, poly(ethylene succinate) (PES) polyesters with polycondensation time regulated molecular weights were synthesized via catalyst-free direct polymerization in an equimolar ratio of ethylene glycol and succinic acid monomers at 185 °C. DSC and contact angle measurements revealed that increasing the molecular weight (Mw, 4.3-5.05 kDa) through the polymerization time (40-80 min) increased the thermal stability (Tm= ∼61-80 °C) and slightly the hydrophobicity (Θw= ∼27-41°) of the obtained aliphatic polyester. Next, this biodegradable polymer was used for the encapsulation of Ca2+ channel blocker Nimodipine (NIMO) to overcome the poor water solubility and enhance the bioavailability of the drug. The drug/ polymer compatibility was proved by the means of solubility (δ) and Flory-Huggins interaction (miscibility) parameters (χ). The nanoprecipitation encapsulation of NIMO into PES with increasing Mw resulted in the formation of spherical 270 ± 103 nm NIMO-loaded PES nanoparticles (NPs). Furthermore, based on the XRD measurements, the encapsulated form of NIMO-loaded PES NPs showed lower drug crystallinity, which enhanced not only the water solubility but even the water stability of the NIMO in an aqueous medium. The in-vitro drug release experiments demonstrated that the release of NIMO drug could be accelerated or even prolonged by the molecular weights of PES as well. Due to the low crystallinity of PES polyester and low particle size of the encapsulated NIMO drug led to enhance solubility and releasing process of NIMO from PES with lower Mw (4.3 kDa and 4.5 kDa) compared to pure crystalline NIMO. However, further increasing the molecular weight (5.05 kDa) was already reduced the amount of drug release that provides the prolonged therapeutic effect and enhances the bioavailability of the NIMO drug.


Asunto(s)
Nanopartículas , Poliésteres , Portadores de Fármacos/química , Liberación de Fármacos , Peso Molecular , Nanopartículas/química , Nimodipina , Tamaño de la Partícula , Poliésteres/química , Polietilenglicoles/química , Polietilenos , Polímeros , Succinatos , Agua
7.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35257321

RESUMEN

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Asunto(s)
Lesiones Encefálicas , Depresión de Propagación Cortical , Accidente Cerebrovascular , Lesiones Encefálicas/terapia , Consenso , Depresión de Propagación Cortical/fisiología , Ácido Glutámico , Humanos
8.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35201268

RESUMEN

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Asunto(s)
Circulación Cerebrovascular/fisiología , Microglía/fisiología , Acoplamiento Neurovascular/fisiología , Receptores Purinérgicos/fisiología , Adulto , Anciano , Animales , Encéfalo/fisiología , Señalización del Calcio/fisiología , Enfermedades de las Arterias Carótidas/fisiopatología , Potenciales Evocados/fisiología , Femenino , Humanos , Hipercapnia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Purinérgicos P2Y12/fisiología , Vasodilatación/fisiología , Vibrisas/inervación
9.
Neurocrit Care ; 37(Suppl 1): 11-30, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35194729

RESUMEN

BACKGROUND: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Depresión de Propagación Cortical , Encéfalo , Isquemia Encefálica/tratamiento farmacológico , Depresión de Propagación Cortical/fisiología , Ácido Glutámico , Humanos , Isquemia
10.
J Cereb Blood Flow Metab ; 42(4): 584-599, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34427145

RESUMEN

Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 µM) predisposes an extensive bulk of tissue (4-5 mm2) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm2), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 µM) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Animales , Ratas , Astrocitos/metabolismo , Edema Encefálico/patología , Lesiones Encefálicas/metabolismo , Edema/metabolismo , Ácido Glutámico/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo
11.
Neurocrit Care ; 37(Suppl 1): 112-122, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34855119

RESUMEN

BACKGROUND: In ischemic stroke, cerebral autoregulation and neurovascular coupling may become impaired. The cerebral blood flow (CBF) response to spreading depolarization (SD) is governed by neurovascular coupling. SDs recur in the ischemic penumbra and reduce neuronal viability by the insufficiency of the CBF response. Autoregulatory failure and SD may coexist in acute brain injury. Here, we set out to explore the interplay between the impairment of cerebrovascular autoregulation, SD occurrence, and the evolution of the SD-coupled CBF response. METHODS: Incomplete global forebrain ischemia was created by bilateral common carotid artery occlusion in isoflurane-anesthetized rats, which induced ischemic SD (iSD). A subsequent SD was initiated 20-40 min later by transient anoxia SD (aSD), achieved by the withdrawal of oxygen from the anesthetic gas mixture for 4-5 min. SD occurrence was confirmed by the recording of direct current potential together with extracellular K+ concentration by intracortical microelectrodes. Changes in local CBF were acquired with laser Doppler flowmetry. Mean arterial blood pressure (MABP) was continuously measured via a catheter inserted into the left femoral artery. CBF and MABP were used to calculate an index of cerebrovascular autoregulation (rCBFx). In a representative imaging experiment, variation in transmembrane potential was visualized with a voltage-sensitive dye in the exposed parietal cortex, and CBF maps were generated with laser speckle contrast analysis. RESULTS: Ischemia induction and anoxia onset gave rise to iSD and aSD, respectively, albeit aSD occurred at a longer latency, and was superimposed on a gradual elevation of K+ concentration. iSD and aSD were accompanied by a transient drop of CBF (down to 11.9 ± 2.9 and 7.4 ± 3.6%, iSD and aSD), but distinctive features set the hypoperfusion transients apart. During iSD, rCBFx indicated intact autoregulation (rCBFx < 0.3). In contrast, aSD was superimposed on autoregulatory failure (rCBFx > 0.3) because CBF followed the decreasing MABP. CBF dropped 15-20 s after iSD, but the onset of hypoperfusion preceded aSD by almost 3 min. Taken together, the CBF response to iSD displayed typical features of spreading ischemia, whereas the transient CBF reduction with aSD appeared to be a passive decrease of CBF following the anoxia-related hypotension, leading to aSD. CONCLUSIONS: We propose that the dysfunction of cerebrovascular autoregulation that occurs simultaneously with hypotension transients poses a substantial risk of SD occurrence and is not a consequence of SD. Under such circumstances, the evolving SD is not accompanied by any recognizable CBF response, which indicates a severely damaged neurovascular coupling.


Asunto(s)
Circulación Cerebrovascular , Hipotensión , Animales , Corteza Cerebral , Circulación Cerebrovascular/fisiología , Homeostasis/fisiología , Hipoxia , Isquemia , Ratas
12.
Polymers (Basel) ; 13(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34451264

RESUMEN

Poly(ethylene succinate) (PES) is one of the most promising biodegradable and biocompatible polyesters and is widely used in different biomedical applications. However, little information is available on its solubility and precipitation properties, despite that these solution behavior properties affect its applicability. In order to systematically study these effects, biodegradable and biocompatible poly(ethylene succinate) (PES) was synthesized using ethylene glycol and succinic acid monomers with an equimolar ratio. Despite the optimized reaction temperature (T = 185 °C) of the direct condensation polymerization, relatively low molecular mass values were achieved without using a catalyst, and the Mn was adjustable with the reaction time (40-100 min) in the range of ~850 and ~1300 Da. The obtained crude products were purified by precipitation from THF ("good" solvent) with excess of methanol ("bad" solvent). The solvents for PES oligomers purification were chosen according to the calculated values of solubility parameters by different approaches (Fedors, Hoy and Hoftyzer-van Krevelen). The theta-solvent composition of the PES solution was 0.3 v/v% water and 0.7 v/v% DMSO in this binary mixture. These measurements were also allowed to determine important parameters such as the coefficients A (=0.67) and B (=3.69 × 104) from the Schulz equation, or the Kη (=8.22 × 10-2) and α (=0.52) constants from the Kuhn-Mark-Houwink equation. Hopefully, the prepared PES with different molecular weights is a promising candidate for biomedical applications and the reported data and constants are useful for other researchers who work with this promising polyester.

13.
Neuropharmacology ; 192: 108612, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34023338

RESUMEN

Dimethyltryptamine (DMT), an endogenous ligand of sigma-1 receptors (Sig-1Rs), acts against systemic hypoxia, but whether DMT may prevent cerebral ischemic injury is unexplored. Here global forebrain ischemia was created in anesthetized rats and aggravated with the induction of spreading depolarizations (SDs) and subsequent short hypoxia before reperfusion. Drugs (DMT, the selective Sig-1R agonist PRE-084, the Sig-1R antagonist NE-100, or the serotonin receptor antagonist asenapine) were administered intravenously alone or in combination while physiological variables and local field potential from the cerebral cortex was recorded. Neuroprotection and the cellular localization of Sig-1R were evaluated with immunocytochemistry. Plasma and brain DMT content was measured by 2D-LC-HRMS/MS. The affinity of drugs for cerebral Sig-1R was evaluated with a radioligand binding assay. Both DMT and PRE-084 mitigated SDs, counteracted with NE-100. Further, DMT attenuated SD when co-administered with asenapine, compared to asenapine alone. DMT reduced the number of apoptotic and ferroptotic cells and supported astrocyte survival. The binding affinity of DMT to Sig-1R matched previously reported values. Sig-1Rs were associated with the perinuclear cytoplasm of neurons, astrocytes and microglia, and with glial processes. According to these data, DMT may be considered as adjuvant pharmacological therapy in the management of acute cerebral ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Depresión de Propagación Cortical/efectos de los fármacos , N,N-Dimetiltriptamina/farmacología , Enfermedades Neurodegenerativas/metabolismo , Receptores sigma/metabolismo , Animales , Encéfalo/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Depresión de Propagación Cortical/fisiología , Relación Dosis-Respuesta a Droga , Masculino , N,N-Dimetiltriptamina/uso terapéutico , Enfermedades Neurodegenerativas/prevención & control , Ratas , Ratas Sprague-Dawley , Receptores sigma/agonistas , Receptor Sigma-1
14.
BMC Neurosci ; 22(1): 33, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941084

RESUMEN

BACKGROUND: Recurrent spreading depolarizations (SDs) occur in stroke and traumatic brain injury and are considered as a hallmark of injury progression. The complexity of conditions associated with SD in the living brain encouraged researchers to study SD in live brain slice preparations, yet methodological differences among laboratories complicate integrative data interpretation. Here we provide a comparative evaluation of SD evolution in live brain slices, in response to selected SD triggers and in various media, under otherwise standardized experimental conditions. METHODS: Rat live coronal brain slices (350 µm) were prepared (n = 51). Hypo-osmotic medium (Na+ content reduced from 130 to 60 mM, HM) or oxygen-glucose deprivation (OGD) were applied to cause osmotic or ischemic challenge. Brain slices superfused with artificial cerebrospinal fluid (aCSF) served as control. SDs were evoked in the control condition with pressure injection of KCl or electric stimulation. Local field potential (LFP) was recorded via an intracortical glass capillary electrode, or intrinsic optical signal imaging was conducted at white light illumination to characterize SDs. TTC and hematoxylin-eosin staining were used to assess tissue damage. RESULTS: Severe osmotic stress or OGD provoked a spontaneous SD. In contrast with SDs triggered in aCSF, these spontaneous depolarizations were characterized by incomplete repolarization and prolonged duration. Further, cortical SDs under HM or OGD propagated over the entire cortex and occassionally invaded the striatum, while SDs in aCSF covered a significantly smaller cortical area before coming to a halt, and never spread to the striatum. SDs in HM displayed the greatest amplitude and the most rapid propagation velocity. Finally, spontaneous SD in HM and especially under OGD was followed by tissue injury. CONCLUSIONS: While the failure of Na+/K+ ATP-ase is thought to impair tissue recovery from OGD-related SD, the tissue swelling-related hyper excitability and the exhaustion of astrocyte buffering capacity are suggested to promote SD evolution under osmotic stress. In contrast with OGD, SD propagating under hypo-osmotic condition is not terminal, yet it is associated with irreversible tissue injury. Further investigation is required to understand the mechanistic similarities or differences between the evolution of SDs spontaneously occurring in HM and under OGD.


Asunto(s)
Encéfalo/metabolismo , Depresión de Propagación Cortical/fisiología , Presión Osmótica/fisiología , Estrés Fisiológico/fisiología , Animales , Hipoxia de la Célula/fisiología , Glucosa/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Ratas Wistar
15.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810538

RESUMEN

Spreading depolarization (SD) is a wave of mass depolarization that causes profound perfusion changes in acute cerebrovascular diseases. Although the astrocyte response is secondary to the neuronal depolarization with SD, it remains to be explored how glial activity is altered after the passage of SD. Here, we describe post-SD high frequency astrocyte Ca2+ oscillations in the mouse somatosensory cortex. The intracellular Ca2+ changes of SR101 labeled astrocytes and the SD-related arteriole diameter variations were simultaneously visualized by multiphoton microscopy in anesthetized mice. Post-SD astrocyte Ca2+ oscillations were identified as Ca2+ events non-synchronized among astrocytes in the field of view. Ca2+ oscillations occurred minutes after the Ca2+ wave of SD. Furthermore, fewer astrocytes were involved in Ca2+ oscillations at a given time, compared to Ca2+ waves, engaging all astrocytes in the field of view simultaneously. Finally, our data confirm that astrocyte Ca2+ waves coincide with arteriolar constriction, while post-SD Ca2+ oscillations occur with the peak of the SD-related vasodilation. This is the first in vivo study to present the post-SD astrocyte Ca2+ oscillations. Our results provide novel insight into the spatio-temporal correlation between glial reactivity and cerebral arteriole diameter changes behind the SD wavefront.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Calcio/metabolismo , Depresión de Propagación Cortical , Oscilometría , Animales , Arteriolas/metabolismo , Astrocitos/citología , Circulación Cerebrovascular , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía , Neuronas , Corteza Somatosensorial/metabolismo , Vasodilatación
16.
Biology (Basel) ; 9(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322264

RESUMEN

Ischemic stroke is a leading cause of death and disability worldwide. Yet, the effective therapy of focal cerebral ischemia has been an unresolved challenge. We propose here that ischemic tissue acidosis, a sensitive metabolic indicator of injury progression in cerebral ischemia, can be harnessed for the targeted delivery of neuroprotective agents. Ischemic tissue acidosis, which represents the accumulation of lactic acid in malperfused brain tissue is significantly exacerbated by the recurrence of spreading depolarizations. Deepening acidosis itself activates specific ion channels to cause neurotoxic cellular Ca2+ accumulation and cytotoxic edema. These processes are thought to contribute to the loss of the ischemic penumbra. The unique metabolic status of the ischemic penumbra has been exploited to identify the penumbra zone with imaging tools. Importantly, acidosis in the ischemic penumbra may also be used to guide therapeutic intervention. Agents with neuroprotective promise are suggested here to be delivered selectively to the ischemic penumbra with pH-responsive smart nanosystems. The administered nanoparticels release their cargo in acidic tissue environment, which reliably delineates sites at risk of injury. Therefore, tissue pH-targeted drug delivery is expected to enrich sites of ongoing injury with the therapeutical agent, without the risk of unfavorable off-target effects.

17.
J Neurosci ; 40(43): 8396-8408, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33020215

RESUMEN

Conspecific-preference in social perception is evident for multiple sensory modalities and in many species. There is also a dedicated neural network for face processing in primates. However, the evolutionary origin and the relative role of neural species sensitivity and face sensitivity in visuo-social processing are largely unknown. In this comparative study, species sensitivity and face sensitivity to identical visual stimuli (videos of human and dog faces and occiputs) were examined using functional magnetic resonance imaging in dogs (n = 20; 45% female) and humans (n = 30; 50% female). In dogs, the bilateral mid suprasylvian gyrus showed conspecific-preference, no regions exhibited face-preference, and the majority of the visually-responsive cortex showed greater conspecific-preference than face-preference. In humans, conspecific-preferring regions (the right amygdala/hippocampus and the posterior superior temporal sulcus) also showed face-preference, and much of the visually-responsive cortex showed greater face-preference than conspecific-preference. Multivariate pattern analyses (MVPAs) identified species-sensitive regions in both species, but face-sensitive regions only in humans. Across-species representational similarity analyses (RSAs) revealed stronger correspondence between dog and human response patterns for distinguishing conspecific from heterospecific faces than other contrasts. Results unveil functional analogies in dog and human visuo-social processing of conspecificity but suggest that cortical specialization for face perception may not be ubiquitous across mammals.SIGNIFICANCE STATEMENT To explore the evolutionary origins of human face-preference and its relationship to conspecific-preference, we conducted the first comparative and noninvasive visual neuroimaging study of a non-primate and a primate species, dogs and humans. Conspecific-preferring brain regions were observed in both species, but face-preferring brain regions were observed only in humans. In dogs, an overwhelming majority of visually-responsive cortex exhibited greater conspecific-preference than face-preference, whereas in humans, much of the visually-responsive cortex showed greater face-preference than conspecific-preference. Together, these findings unveil functional analogies and differences in the organizing principles of visuo-social processing across two phylogenetically distant mammal species.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Reconocimiento Facial/fisiología , Reconocimiento en Psicología/fisiología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Animales , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Perros , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Humanos , Individualidad , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Especificidad de la Especie , Vías Visuales/fisiología , Adulto Joven
18.
J Pharm Biomed Anal ; 191: 113615, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32942106

RESUMEN

The orthogonal heart-cutting liquid chromatography (LC) modes coupled to high-resolution tandem mass spectrometry (HRMS/MS) provide a number of possibilities to enhance selectivity and sensitivity for the determination of targeted compounds in complex biological matricies. Here we report the development of a new fast 2D-LC-(HRMS/MS) method and its successful application for quantitative determination of the level of plasma and brain N,N-dimethyltriptamine (DMT) using α-methyltryptamine (AMT) as internal standard in an experimental model of cerebral ischemia/reperfusion using DMT administration. The 2D-LC separation was carried out by a combination of hydrophilic interaction liquid chromatography (HILIC) in the first dimension followed by second-dimensional reversed-phase (RP) chromatography within a total run time of 10 min. The enrichment of HILIC effluent of interest containing DMT was performed using a C18 trapping column. During method development several parameters of sample preparation procedures, chromatographic separation and mass spectrometric detection were optimised to achieve high DMT recovery (plasma: 90 %, brain: 88 %) and sensitivity (plasma: 0.108 ng/mL of LOD, brain: 0.212 ng/g of LOD) applying targeted analytical method with strict LC and HRMSMS confirmatory criteria. Concerning rat plasma sample, the concentration of DMT before hypoxia (49.3-114.3 ng/mL plasma) was generally higher than that after hypoxia (10.6-96.1 ng/mL plasma). After treatment, the concentration of DMT in brain was elevated up to the range of 2-6.1 ng/g. Overall, our analytical approach is suitable to detect and confirm the presence of DMT administered to experimental animals with therapeutic purpose in a reliable manner.


Asunto(s)
N,N-Dimetiltriptamina , Espectrometría de Masas en Tándem , Animales , Encéfalo , Cromatografía Liquida , Cromatografía de Fase Inversa , Ratas
19.
Geroscience ; 42(2): 429-444, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32236824

RESUMEN

Age-related phenotypic changes of cerebromicrovascular endothelial cells lead to dysregulation of cerebral blood flow and blood-brain barrier disruption, promoting the pathogenesis of vascular cognitive impairment (VCI). In recent years, endothelial cell senescence has emerged as a potential mechanism contributing to microvascular pathologies opening the avenue to the therapeutic exploitation of senolytic drugs in preclinical studies. However, difficulties with the detection of senescent endothelial cells in wild type mouse models of aging hinder the assessment of the efficiency of senolytic treatments. To detect senescent endothelial cells in the aging mouse brain, we analyzed 4233 cells in fractions enriched for cerebromicrovascular endothelial cells and other cells associated with the neurovascular unit obtained from young (3-month-old) and aged (28-month-old) C57BL/6 mice. We define 13 transcriptomic cell types by deep, single-cell RNA sequencing. We match transcriptomic signatures of cellular senescence to endothelial cells identified on the basis of their gene expression profile. Our study demonstrates that with advanced aging, there is an increased ratio of senescent endothelial cells (~ 10%) in the mouse cerebral microcirculation. We propose that our single-cell RNA sequencing-based method can be adapted to study the effect of aging on senescence in various brain cell types as well as to evaluate the efficiency of various senolytic regimens in multiple tissues.


Asunto(s)
Disfunción Cognitiva , Células Endoteliales , Análisis de Secuencia de ARN , Animales , Encéfalo , Senescencia Celular , Disfunción Cognitiva/genética , Ratones , Ratones Endogámicos C57BL
20.
Geroscience ; 42(2): 527-546, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056076

RESUMEN

Aging-induced structural and functional alterations of the neurovascular unit lead to impairment of neurovascular coupling responses, dysregulation of cerebral blood flow, and increased neuroinflammation, all of which contribute importantly to the pathogenesis of age-related vascular cognitive impairment (VCI). There is increasing evidence showing that a decrease in NAD+ availability with age plays a critical role in age-related neurovascular and cerebromicrovascular dysfunction. Our recent studies demonstrate that restoring cellular NAD+ levels in aged mice rescues neurovascular function, increases cerebral blood flow, and improves performance on cognitive tasks. To determine the effects of restoring cellular NAD+ levels on neurovascular gene expression profiles, 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, for 2 weeks. Transcriptome analysis of preparations enriched for cells of the neurovascular unit was performed by RNA-seq. Neurovascular gene expression signatures in NMN-treated aged mice were compared with those in untreated young and aged control mice. We identified 590 genes differentially expressed in the aged neurovascular unit, 204 of which are restored toward youthful expression levels by NMN treatment. The transcriptional footprint of NMN treatment indicates that increased NAD+ levels promote SIRT1 activation in the neurovascular unit, as demonstrated by analysis of upstream regulators of differentially expressed genes as well as analysis of the expression of known SIRT1-dependent genes. Pathway analysis predicts that neurovascular protective effects of NMN are mediated by the induction of genes involved in mitochondrial rejuvenation, anti-inflammatory, and anti-apoptotic pathways. In conclusion, the recently demonstrated protective effects of NMN treatment on neurovascular function can be attributed to multifaceted sirtuin-mediated anti-aging changes in the neurovascular transcriptome. Our present findings taken together with the results of recent studies using mitochondria-targeted interventions suggest that mitochondrial rejuvenation is a critical mechanism to restore neurovascular health and improve cerebral blood flow in aging.


Asunto(s)
Mononucleótido de Nicotinamida , Rejuvenecimiento , Sirtuina 1 , Animales , Antiinflamatorios , Suplementos Dietéticos , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Mononucleótido de Nicotinamida/farmacología , Sirtuina 1/genética , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...